全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物根际促生菌的促生防病作用机制
Mechanisms of Growth-Promoting and Disease-Preventive Action of Plant Growth Promoting Rhizobacteria

DOI: 10.12677/BR.2024.131003, PP. 21-27

Keywords: 植物根际生防菌,植物肥料,生物农药
Plant Growth Promoting Rhizobacteria
, Biopesticides, Plant Fertilizer

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物根际促生菌是能够生活在植物根际环境中,显著提高植物生长活力,在植物表面根系定殖,抑制病原菌防治的有益菌的统称。植物根际促生菌既能促进植物生长又可以防治植物病害,可以规避化学农药对于土壤污染加剧和危害人畜安全等问题,具备广阔的应用前景。本文综述了植物根际促生菌发挥促生作用的机制以及防治植物病害的机理,旨在为植物肥料和生物农药的开发提供新思路和新途径。
Plant growth promoting rhizobacteria are beneficial bacteria that can live in the inter-root environment of plants, significantly improve plant growth and vitality, colonize the root system on the surface of plants, and inhibit the prevention and control of pathogenic bacteria. Plant growth promoting rhizobacteria can promote plant growth, prevent plant diseases and can avoid the problems of chemical pesticides that increase soil pollution and jeopardize the safety of humans and animals, so they have a brilliant application prospect. In this paper, we reviewed the mechanism of plant growth promoting rhizobacteria and the mechanism of plant disease control, aiming to provide new ideas and new ways for the development of plant fertilizers and biopesticides.

References

[1]  Reza, K., Farzaneh, F., Mehdi, P., et al. (2019) The Effects of Biological, Chemical, and Organic Fertilizers Application on Root Growth Features and Grain Yield of Sorghum. Journal of Plant Nutrition, 42, 2221-2233.
https://doi.org/10.1080/01904167.2019.1648667
[2]  孟静, 张丽慧, 白变霞, 等. 一株党参根际促生长菌的促生长特性及其挥发性物质对农作物生长的影响[J]. 中国农学通报, 2023, 39(30): 123-131.
[3]  刘红雨. 一株蜡样芽孢杆菌DW019的防病与促生功能研究[D]: [硕士学位论文]. 赣州: 江西理工大学, 2023.
[4]  肖薇薇. 耐镉镍根际促生菌的筛选及其对镉镍复合胁迫下水稻幼苗生长的影响[D]: [硕士学位论文]. 天津: 天津大学, 2021.
[5]  张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2.
[6]  Whitman, T., Neurath, R., Perera, A., et al. (2018) Microbial Community Assembly Differs across Minerals in Arhizosphere Microcosm. Environmental Microbiology, 20, 4444-4460.
[7]  Sanjay, P., Jinal, H.N. and Amaresan, N. (2017) Isolation and Characterization of Drought Resistance Bacteria for Plant Growth Promoting Properties and Their Effect on Chilli (Capsicum annuum) Seedling under Salt Stress. Biocatalysis and Agricultural Biotechnology, 12, 85-89.
https://doi.org/10.1016/j.bcab.2017.09.002
[8]  Etesami, H. and Beattie, G.A. (2018) Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-Halophytic Crops. Frontiers in Microbiology, 9, Article No. 148.
https://doi.org/10.3389/fmicb.2018.00148
[9]  Tariq, M., Noman, M., Ahmed, T., et al. (2017) Antagonistic Features Displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. Journal of Plant Science and Phytopathology, 1, 38-43.
https://doi.org/10.29328/journal.jpsp.1001004
[10]  田婧, 李邵, 连青龙, 等. 植物根际促生菌在蔬菜种植中的应用进展[J]. 北方园艺, 2016(6): 181-185.
[11]  霍佳慧, 毕少杰, 于欣卉, 等. 植物根际促生菌作用机制研究进展[J]. 现代农业科技, 2022(9): 90-96.
[12]  穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127.
[13]  Pii, Y., Mimmo, T., Tomasi, N., et al. (2015) Microbial Interactions in the Rhizosphere: Beneficial Influences of Plant Growth-Promoting Rhizobacteria on Nutrient Acquisition Process. A Review. Biology and Fertility of Soils, 51, 403-415.
https://doi.org/10.1007/s00374-015-0996-1
[14]  Mahmud, K., Makaju, S., Ibrahim, R., et al. (2020) Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants (Basel), 9, Article No. 97.
https://doi.org/10.3390/plants9010097
[15]  康贻军, 沈敏, 王欢莉, 等. 根际微生物群落与促生菌多样性及其筛选策略[J]. 湖北农业科学, 2012, 51(24): 5553-5558.
[16]  Ledgard, S.F. (1991) Transfer of Fixed Nitrogen from White Clover to Associated Grasses in Swards Grazed by Dairy Cows, Estimated Using 15N Methods. Plant and Soil, 131, 215-223.
https://doi.org/10.1007/BF00009451
[17]  韩梅, 罗培宇, 肖亦农, 等. 玉米内生固氮菌的分离鉴定及其促生长作用研究[J]. 沈阳农业大学学报, 2010, 41(1): 94-97.
[18]  Alori, E.T., Glick, B.R. and Babalola, O.O. (2017) Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, Article No. 971.
https://doi.org/10.3389/fmicb.2017.00971
[19]  Hilda, R. and Reynaldo, F. (1999) Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnology Advances, 17, 319-339.
https://doi.org/10.1016/S0734-9750(99)00014-2
[20]  勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506.
[21]  苏辉兰, 余炳锋, 廖彩凤, 等. 解磷菌对油麦菜的促生作用[J]. 湖南农业科学, 2023(3): 31-35.
[22]  王君, 范延辉, 尚帅, 等. 一株根际解磷菌的筛选鉴定及溶磷促生作用[J]. 中国土壤与肥料, 2022(6): 195-203.
[23]  王彦佳, 胡伯昂, 陈佳欣, 等. 2株紫花苜蓿解钾菌的筛选鉴定及其对产量和品质的影响[J]. 草业学报, 2023, 32(12): 139-149.
[24]  曹媛媛, 张丽娜, 郭婷婷, 等. 根际解钾菌对烟草生长及钾素吸收的影响[J]. 安徽农业大学学报, 2019, 46(1): 141-145.
[25]  Carroll, C.S. and Moore, M.M. (2018) Ironing out Siderophore Biosynthesis: A Review of Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore Synthetases. Critical Reviews in Biochemistry and Molecular Biology, 53, 356-381.
https://doi.org/10.1080/10409238.2018.1476449
[26]  梁建根. 产嗜铁素菌株HZ-2的鉴定及其产嗜铁素能力的检测[J]. 浙江农业科学, 2021, 62(9): 1849-1852+1881.
[27]  武雯雯, 薛林贵, 张璐, 等. 一株产嗜铁素耐镉菌的分离及其对黑麦草种子萌发的作用[J]. 微生物学通报, 2021, 48(6): 1895-1906.
[28]  Rubio, V., Bustos, R., Irigoyen, M.L., et al. (2009) Plant Hormones and Nutrient Signaling. Plant Molecular Biology, 69, 361-373.
https://doi.org/10.1007/s11103-008-9380-y
[29]  李玲, 黄光文, 何福林, 等. 外源激素在野葛快速繁殖中的应用与进展[J]. 湘南学院学报, 2015, 36(5): 28-30.
[30]  欧阳波, 李汉霞, 叶志彪. 玉米素和IAA对番茄子叶再生的影响[J]. 植物生理学通讯, 2003(3): 217-218.
[31]  陆娟, 苏利梅, 胡名扬, 等. 芝麻根际生长素产生菌SA4的分离与鉴定[J]. 阜阳师范学院学报(自然科学版), 2015, 32(2): 79-82.
[32]  朱诗苗. IAA促生菌的分离鉴定及对烟草种子萌发与烟苗生长发育的影响[D]: [硕士学位论文]. 延吉: 延边大学, 2020.
[33]  李江, 靳艳玲, 赵海. 根际促生菌对植物生长的影响及其作用机制[J]. 黑龙江农业科学, 2023(10): 132-137.
[34]  邵兰军, 刘凯, 李宙文, 等. 烟草叶际细胞分裂素产生菌Y-P22的筛选、鉴定及其应用效果[J]. 山东农业大学学报(自然科学版), 2015, 46(2): 194-197.
[35]  Kang, S.M., Joo, G.J., Hamayun, M., et al. (2009) Gibberellin Production and Phosphate Solubilization by Newly Isolated Strain of Acinetobacter calcoaceticus and Its Effect on Plant Growth. Biotechnology Letters, 31, 277-281.
https://doi.org/10.1007/s10529-008-9867-2
[36]  吴秉奇, 梁永江, 丁延芹, 等. 两株烟草根际拮抗菌的生防和促生效果研究[J]. 中国烟草科学, 2013, 34(1): 66-71.
[37]  Joo, G.J., Kim, Y.M., Kim, J.T., et al. (2005) Gibberellins-Producing Rhizobacteria Increase Endogenous Gibberellins Content and Promote Growth of Red Peppers. Journal of Microbiology, 43, 510-515.
[38]  Ashour, A. and Afify, A. (2017) Antagonistic Effect of Plant Growth Promoting Rhizobacteria (PGPR) as Biocontrol of Plants Damping-Off. Journal of Agricultural Chemistry and Biotechnology, 8, 119-122.
https://doi.org/10.21608/jacb.2017.38481
[39]  章帅文, 刘群, 杨勇, 等. 黄麻链霉菌AUH-1拮抗水稻纹枯病菌的作用机制研究[J]. 江西农业大学学报, 2019, 41(6): 1048-1053.
[40]  阮宏椿, 石妞妞, 杜宜新, 等. 水稻稻瘟病拮抗稀有放线菌的筛选及防治效果[J]. 中国生物防治学报, 2021, 37(3): 538-546.
[41]  刘邮洲, 陈志谊, 刘永锋, 等. 拮抗细菌B-916对水稻病原菌的抑制效果及其定殖动态研究[J]. 江苏农业科学, 2005(6): 48-49+72.
[42]  Rashid, M. and Chung, Y.R. (2017) Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes. Frontiers in Plant Science, 8, Article No. 1816.
https://doi.org/10.3389/fpls.2017.01816
[43]  Benhamou, N. (1996) Induction of Differential Host Responses by Pseudomonas fluorescens in Ri T-DNA Transformed Pea Roots after Challenge with Fusarium oxysporum f.sp. pisi and Pythium ultimum. Phytopathology, 86, 114-178.
https://doi.org/10.1094/Phyto-86-1174
[44]  Anderson, A.J. (1985) Responses of Bean to Root Colonization with Pseudomonas putida in a Hydroponic System. Phytopathology, 75, 992-995.
https://doi.org/10.1094/Phyto-75-992
[45]  Lopes, M., Dias-Filho, M. and Gurgel, E. (2021) Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Frontiers in Sustainable Food Systems, 5, Article ID: 606454.
https://doi.org/10.3389/fsufs.2021.606454
[46]  马莹, 曹梦圆, 石孝均, 等. 植物促生菌的功能及在可持续农业中的应用[J]. 土壤学报, 2022: 1-15.
[47]  Li, J.T., Yang, H., Chen, Y., et al. (2022) Development and Preliminary Application of Compound Bacterial Agent for Degrading Carbendazim and Acetamiprid Residues. Soils, 54, 646-652.
[48]  Báez-Vallejo, N., Camarena-Pozos, D.A., Monribot-Villanueva, J.L., et al. (2020) Forest Tree Associated Bacteria for Potential Biological Control of Fusarium solani and of Fusarium kuroshium, Causal Agent of Fusarium Dieback. Microbiological Research, 235, Article ID: 126440.
https://doi.org/10.1016/j.micres.2020.126440
[49]  田琳, 陈婧, 王阳. 西瓜枯萎病生防链霉菌的筛选及其防治机理研究[J]. 中国生物防治学报, 2023, 39(3): 657-666.
[50]  张芬. 水稻稻瘟病和白叶枯病拮抗细菌的筛选及防治作用研究[D]: [硕士学位论文]. 南京: 南京农业大学, 2011.
[51]  薄永琳, 葛淼淼, 侯冰, 等. 根际促生菌对植物生长的调控作用研究进展[J]. 环境保护与循环经济, 2022, 42(10): 66-71.
[52]  赵玲玉, 索升州, 赵祺, 等. 梭梭根际促生菌(PGPR)菌肥对番茄产量、品质和土壤特性的影响[J]. 甘肃农业大学学报, 2022, 57(3): 42-51, 57.
[53]  杜东霞, 李咏梅, 喻孟元, 等. 耐镉根际促生菌WYN5的分子鉴定及其对黑麦草富集镉的影响[J]. 中国农学通报, 2023, 39(27): 59-66.
[54]  袁明. PGPR菌剂在蜈蚣草修复砷污染土壤中的应用研究[J]. 种子科技, 2021(23): 22-25.
[55]  苗益博, 杨傲, 邢成广, 等. 联合接种植物生长益生菌提高杂交象草在铜污染土壤修复中的效率[J]. 中山大学学报(自然科学版) (中英文), 2022, 61(5): 50-61.
[56]  徐丽娟, 张金政, 袁玉清, 等. AMF和PGPR修复甲胺磷污染土壤的效应[J]. 土壤学报, 2016, 53(4): 919-929.
[57]  接伟光, 姚延轩, 张颖智, 等.根际促生微生物对作物农残影响的研究进展[J]. 生物技术, 2019, 29(4): 398-403+397.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413