全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于鱼眼图像修正的天空视域因子计算方法
Sky View Factor Calculation Method Based on Fisheye Image Correction

DOI: 10.12677/GST.2024.121006, PP. 39-46

Keywords: 天空视域因子,鱼眼摄影,图像畸变修正,鱼眼投影模型
Sky View Factor
, Fisheye Photography, Image Distortion Correction, Fisheye Projection Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

天空视域因子(SVF)是城市热环境的重要评价指标之一。利用鱼眼照片估计天空视域因子的方法快速准确,但深受等距投影的制约。在本研究中提出一种对鱼眼照片进行等距化畸变修正的方法,将任意投影模型的鱼眼镜头实拍图修正为等距投影下的图像,然后用Steyn算法计算SVF值。通过对比两组镜头的实验结果,说明非等距投影鱼眼镜头也能得到准确的SVF值,验证了该方法的精度和有效性。本文的方法具有很高的经济性、实用性,为城市热环境领域研究者及城市规划人员提供了便利。
Sky View Factor (SVF) is one of the essential indicators for urban thermal environmental assess-ment. The method of estimating SVF using fisheye photographs is fast and accurate, but it is re-stricted by equidistant projections. This study proposes an equidistant distortion correction meth-od for fisheye photographs that can transform the fisheye lens photo of any projection model into the image under the equidistant projection. Then, SVF values are calculated using Steyn’s method. Comparing the experimental results of two groups of lenses shows that accurate SVF values can be obtained for a non-equidistant projection fisheye lens. The accuracy and validity of the method are verified. The method proposed in this article is highly economical and practical, providing conven-ience for researchers and urban planners in urban thermal environments.

References

[1]  Eliasson, I. (1990) Urban Geometry, Surface Temperature and Air Temperature. Energy and Buildings, 15, 141-145.
https://doi.org/10.1016/0378-7788(90)90125-3
[2]  Oke, T.R. (1979) Boundary Layer Climates. Routledge, London, 227-302.
[3]  毛娅玲. 天空视域因子计算方法及城市热岛效应分析研究[D]: [硕士学位论文]. 张家口: 河北建筑工程学院, 2019.
[4]  任智慧. 基于SVF的哈尔滨典型街谷空间热环境优化模拟研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019.
[5]  Frazer, G., Fournier, R., Trofymow, J., et al. (2001) A Comparison of Digital and Film Fisheye Photography for Analysis of Forest Canopy Structure and Gap Light Transmission. Agricultural and Forest Meteorology, 109, 249-263.
https://doi.org/10.1016/S0168-1923(01)00274-X
[6]  Li, G., Ren, Z. and Zhan, C. (2020) Sky View Factor-Based Correlation of Landscape Morphology and the Thermal Environment of Street Canyons: A Case Study of Harbin, China. Building and Environment, 169, Article ID: 106587.
https://doi.org/10.1016/j.buildenv.2019.106587
[7]  Oke, T.R. (1981) Canyon Geometry and the Urban Heat Island Comparison of Scale Model and Field Observations. Journal of Climatology, 1, 237-254.
https://doi.org/10.1002/joc.3370010304
[8]  Johnson, G.T. and Watson, I.D. (1984) The Determination of View-Factors in Ur-ban Canyons. Journal of Applied Meteorology and Climatology, 23, 329-335.
https://doi.org/10.1175/1520-0450(1984)023<0329:TDOVFI>2.0.CO;2
[9]  Chapman, L., Thornes, J.E. and Bradley, A.V. (2002) Sky-View Factor Approximation Using GPS Receivers. International Journal of Climatology, 22, 615-621.
https://doi.org/10.1002/joc.649
[10]  Matzarakis, A. and Matuschek, O. (2011) Sky View Factor as a Parameter in Applied Cli-matology Rapid Estimation by the SkyHelios Model. Meteorologische Zeitschrift, 20, 39-45.
https://doi.org/10.1127/0941-2948/2011/0499
[11]  Carrasco-Hernandez, R., Smedley, A.R.D. and Webb, A.R. (2015) Using Urban Canyon Geometries Obtained from Google Street View for Atmospheric Studies: Potential Applications in the Calculation of Street Level Total Shortwave Irradiances. Energy and Buildings, 86, 340-348.
https://doi.org/10.1016/j.enbuild.2014.10.001
[12]  Hu, C.-B., Zhang, F., Gong, F.-Y., et al. (2020) Classification and Mapping of Urban Canyon Geometry Using Google Street View Images and Deep Multitask Learning. Building and Environment, 167, Article ID: 106424.
https://doi.org/10.1016/j.buildenv.2019.106424
[13]  Herbert, T.J. (1986) Calibration of Fisheye Lenses by Inversion of Area Projections. Applied Optics, 25, 1875-1876.
https://doi.org/10.1364/AO.25.001875
[14]  Zeng, L., Lu, J., Li, W., et al. (2018) A Fast Approach for Large-Scale Sky View Factor Estimation Using Street View Images. Building and Environment, 135, 74-84.
https://doi.org/10.1016/j.buildenv.2018.03.009
[15]  Steyn, D.G. (1980) The Calculation of View Factors from Fisheye-Lens Photographs: Research Note. Atmosphere-Ocean, 18, 254-258.
https://doi.org/10.1080/07055900.1980.9649091
[16]  Matzarakis, A., Rutz, F. and Mayer, H. (2007) Modelling Radiation Fluxes in Simple and Complex Environments— Application of the RayMan Model. International Journal of Biometeorology, 51, 323-334.
https://doi.org/10.1007/s00484-006-0061-8
[17]  Chapman, L., Thornes, J.E. and Bradley, A.V. (2001) Rapid Determination of Canyon Geometry Parameters for Use in Surface Radiation Budgets. Theoretical and Applied Climatology, 69, 81-89.
https://doi.org/10.1007/s007040170036
[18]  Honjo, T., Tzu-Ping, L.I.N. and Seo, Y. (2019) Sky View Factor Measurement by Using a Spherical Camera. Journal of Agricultural Meteorology, 75, 59-66.
https://doi.org/10.2480/agrmet.D-18-00027
[19]  Grimmond, C.S.B., Potter, S.K., Zutter, H.N., et al. (2001) Rapid Methods to Estimate Sky-View Factors Applied to Urban Areas. International Journal of Climatology, 21, 903-913.
https://doi.org/10.1002/joc.659
[20]  Clark, J.A. and Follin, G.M. (1988) A Simple “Equal Area” Calibration for Fisheye Photog-raphy. Agricultural and Forest Meteorology, 44, 19-25.
https://doi.org/10.1016/0168-1923(88)90030-5

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413