全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

反应堆多物理场耦合计算中的不确定性研究概述
Review of Uncertainty Research in Reactor Multi-Physics Coupling Calculation

DOI: 10.12677/NST.2024.121005, PP. 36-51

Keywords: 耦合计算,不确定性分析,数值反应堆,混合不确定性
Coupling Calculation
, Uncertainty Analysis, Numerical Reactors, Mixed Uncertainty

Full-Text   Cite this paper   Add to My Lib

Abstract:

核反应堆是一个由粒子场、温度场、流体场、应力场等多个物理过程相互紧密耦合的系统,先进核反应堆数值模拟需要解决多尺度、大规模、多物理场耦合问题。近年来,随着计算机技术和现代数值仿真技术的进步,使得通过多物理场、多尺度等耦合框架实现对反应堆综合性能的大规模数值模拟成为可能,数值反应堆乃至反应堆数字孪生系统成为数值模拟的总体目标。随着最佳估算加不确定性分析方法的推广,不确定性分析成为核反应堆设计和安全分析的重要组成部分。相比起针对单一程序或单一物理场的不确定性分析,对于多物理场耦合计算的不确定性分析则更为复杂,除了各个物理场模拟本身的不确定性外,还必须考虑程序耦合过程中引入的不确定性,该方面的研究尚不够深入。本文从单物理场计算程序的不确定性源及其分析方法出发,对目前已开展的耦合程序计算不确定性分析相关工作进行了总结和阐述,并对多物理场耦合计算中的混合不确定性研究进行了初步分析。
Nuclear reactor is a system which is closely coupled with many physical processes such as particle field, temperature field, flow field, and stress field. The numerical simulation of advanced nuclear reactor needs to solve the problems of multi-scale, large-scale and multi-physical field coupling. In recent years, with the progress of computer technology and modern numerical simulation technology, it is possible to realize large-scale numerical simulation of comprehensive reactor performance through multi-physical field and multi-scale coupling framework, numerical reactor and even reactor digital twin system become the overall target of numerical simulation. With the popularization of the method of best estimate plus uncertainty analysis, uncertainty analysis has become an important part of nuclear reactor design and safety analysis. Compared with the uncertainty analysis for a single code or a single physical field, the uncertainty analysis for the multi-physical field coupling calculation is more complex. In addition to the uncertainty of each physical field simulation itself, the uncertainty caused by the code coupling process must be considered, which has not been studied deeply enough. Based on the uncertainty sources and analysis methods of single physical field computing code, this paper summarizes and expounds the existing work on the uncertainty analysis of coupling codes, and makes a preliminary analysis on the mixed uncertainty research of multi-physics coupling calculation.

References

[1]  Yang, J., Yang, Y., Deng, C., et al. (2019) Best Estimate plus Uncertainty Analysis of a Large Break LOCA on Genera-tion III Reactor with RELAP5. Annals of Nuclear Energy, 127, 326-340.
https://doi.org/10.1016/j.anucene.2018.12.019
[2]  Pro?ek, A. and Berar, O.A. (2012) Advanced Presentation of BETHSY 6.2 TC Test Results Calculated by RELAP5 and TRACE. Science and Technology of Nuclear Installations, 2012, Article ID: 812130.
https://doi.org/10.1155/2012/812130
[3]  Tran, V.P., Nguyen, K.C., Hartanto, D., et al. (2021) Development of a PARCS/Serpent Model for Neutronics Analysis of the Dalat Nuclear Research Reactor. Nuclear Science and Techniques, 32, 34-46.
https://doi.org/10.1007/s41365-021-00855-5
[4]  姜强, 刘天才, 杨宏伟. 基于UQLab的COBRA不确定性量化分析[J]. 科技创新导报, 2020, 17(5): 76-79.
[5]  Chauliac, C., Aragonés, J.M., Bestion, D., et al. (2011) NURESIM—A European Simulation Platform for Nuclear Reactor Safety: Multi-Scale and Multi-Physics Calculations, Sensitivity and Uncertainty Analysis. Nuclear Engineering Design, 241, 3416-3426.
https://doi.org/10.1016/j.nucengdes.2010.09.040
[6]  Chanaron, B. (2017) Overview of the NURESAFE Europe-an Project. Nuclear Engineering and Design, 321, 1-7.
https://doi.org/10.1016/j.nucengdes.2017.09.001
[7]  Demazière, C., Sanchez-Espinoza, V.H. and Chanaron, B. (2020) Advanced Numerical Simulation and Modelling for Reactor Safety—Contributions from the CORTEX, HPMC, McSAFE and NURESAFE Projects. EPJ Nuclear Sciences & Technologies, 6, 42.
https://doi.org/10.1051/epjn/2019006
[8]  Szilard, R., Zhang, H., Kothe, D., et al. (2011) The Consortium for Advanced Simulation of Light Water Reactors. Idaho National Lab. (INL), Idaho Falls.
[9]  Bradley, K. (2013) NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program. Argonne National Lab. (ANL), Ar-gonne.
[10]  ARPA-E (2019) Generating Electricity Managed by Intelligent Nuclear Assets. https://arpa-e.energy.gov/technologies/programs/gemina
[11]  杨文, 胡长军, 刘天才, 等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术, 2019, 53(10): 1821.
[12]  贺青云, 陈俊, 马忠英, 等. 三维耦合分析软件的落棒事故分析[J]. 原子能科学技术, 2022, 56(2): 343-350.
[13]  张宏博, 赵晨, 彭星杰, 等. 数字化反应堆高保真中子学程序SHARK研发[J]. 原子能科学技术, 2022, 56(2): 334-342.
[14]  余红星, 李文杰, 柴晓明, 等. 数字反应堆发展与挑战[J]. 核动力工程, 2020, 41(4): 7.
[15]  曹良志, 邹晓阳, 刘宙宇, 等. 高保真数值核反应堆不确定度量化方法研究进展[J]. 核动力工程, 2021, 42(2): 1-15.
[16]  D’Auria, F.S., Glaeser, H., Lee, S., et al. (2008) Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation. IAEA Safety Report Series. IAEA.
[17]  杨文. 基于确定性采样的核热耦合计算不确定性分析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2020.
[18]  王洋洋. 核电厂典型事故分析不确定性评价方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2017.
[19]  张春艳. 核数据不确定性传播方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2016.
[20]  De Crècy, A. (1996) Determination of the Uncertainties of the Constitutive Relationships in the Calthare 2 Code. American Society of Me-chanical Engineers, New York.
[21]  Heo, J., Turinsky, P.J. and Doster, J.M. (2013) Optimization of Thermal-Hydraulic Reactor System for SMRs via Data Assimilation and Uncertainty Quantification. Nuclear Science Engineering, 173, 293-311.
https://doi.org/10.13182/NSE11-113
[22]  Petruzzi, A., Kovtonyuk, A., Raucci, M., et al. (2013) A Procedure for Characterizing the Range of Input Uncertainty Parameters by the Use of FFTBM.
https://doi.org/10.1115/ICONE20-POWER2012-54025
[23]  Reventós, F., de Alfonso, A., Zhang, J., et al. (2016) Premium, a Benchmark on the Quantification of the Uncertainty of the Physical Models in the System Thermal-Hydraulic Codes: Methodologies and Data Review.
[24]  Zhang, J., Dethioux, A., Kovtonyuk, A., et al. (2019) Development of a Pragmatic Approach to Model Input Uncertainty Quantification for BEPU Applications. Nuclear Technology, 205, 140-152.
https://doi.org/10.1080/00295450.2018.1516055
[25]  Cabellos de Francisco, O.L., Martínez, J.S. and Diez de la Obra, C.J. (2011) Isotopic Uncertainty Assessment Due to Nuclear Data Uncertainties in High-Burnup Sam-ples.
[26]  Wieselquist, W., Vasiliev, A. and Ferroukhi, H. (2012) Nuclear Data Uncertainty Propagation in a Lattice Physics Code Using Stochastic Sampling. In: Proceedings of the PHYSOR-2012 Conference, Advances in Reactor Phys-ics Linking Research, Industry, and Education, on CD-ROM, American Nuclear Society, Knoxville, 15-20.
[27]  Williams, M., Wiarda, D., Smith, H., et al. (2012) Development of a Statistical Sampling Method for Un-certainty Analysis with SCALE. American Nuclear Society, Inc., La Grange Park.
[28]  Pusa, M. and Isotalo, A. (2017) Uncertainty Analysis of Assembly and Core-Level Calculations with Application to CASMO-4E and SIMULATE-3. Annals of Nuclear Energy, 104, 124-131.
https://doi.org/10.1016/j.anucene.2017.01.042
[29]  Garcia-Herranz, N., Cabellos, O., Sanz, J., et al. (2008) Propa-gation of Statistical and Nuclear Data Uncertainties in Monte Carlo Burn-Up Calculations. Annals of Nuclear Energy, 35, 714-730.
https://doi.org/10.1016/j.anucene.2007.07.022
[30]  Wan, C., Cao, L., Wu, H., et al. (2015) Code Development for Eigenvalue Total Sensitivity Analysis and Total Uncertainty Analysis. Annals of Nuclear Energy, 85, 788-797.
https://doi.org/10.1016/j.anucene.2015.06.036
[31]  Ornl, S. (2011) A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design. ORNL/TM-2005/39, Version, 6(3).
[32]  Kodeli, I. (2001) Multidimen-sional Deterministic Nuclear Data Sensitivity and Uncertainty Code System: Method and Application. Nuclear Science and Engineering, 138, 45-66.
https://doi.org/10.13182/NSE00-43
[33]  Han, T.Y., Lee, H.C. and Noh, J.M. (2015) Development of a Sensitivity and Uncertainty Analysis Code for High Temperature Gas-Cooled Reactor Physics Based on the Generalized Perturbation Theory. Annals of Nuclear Energy, 85, 501-511.
https://doi.org/10.1016/j.anucene.2015.06.005
[34]  Pusa, M. (2012) Perturbation-Theory-Based Sensitivity and Uncertainty Analysis with CASMO-4. Science and Technology of Nuclear Installations, 2012, Article ID: 157029.
https://doi.org/10.1155/2012/157029
[35]  Takeda, T., Asano, K. and Kitada, T. (2006) Sensitivity Analysis Based on Transport Theory. Journal of Nuclear Science and Technology, 43, 743-749.
https://doi.org/10.1080/18811248.2006.9711156
[36]  刚直. 核截面引起积分参数keff不确定度的一维分析程序开发[D]: [硕士学位论文]. 北京: 中国原子能科学研究院, 2006.
[37]  胡泽华, 王佳, 孙伟力, 等. 基准模型keff对核数据的灵敏度分析及不确定度量化[J]. 原子能科学技术, 2013, 47(增刊): 312.
[38]  刘勇, 曹良志, 吴宏春, 等. 基于经典微扰理论的特征值灵敏度和不确定度分析[J]. 原子能科学技术, 2015, 49(7): 1247.
[39]  丘意书, 梁金刚, 余健开, 等. RMC程序敏感性分析功能的并行策略与验证[J]. 核动力工程, 2015, 36(3): 152-156.
[40]  Rhodes, J., Smith, K. and Lee, D. (2006) CASMO-5 Development and Applications. Proceedings of the PHYSOR-2006 Conference, ANS Topical Meeting on Reactor Physics, Vancouver, 10-14 September 2006, 144.
[41]  康慧伦. 压水堆物理-热工多尺度耦合计算研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.
[42]  ánchel, F., Barrachina, T., Miró, R., et al. (2012) Uncertainty and Sensitivity Analysis in the Neutronic Parameters Generation for BWR and PWR Coupled Thermal-Hydraulic-Neutronic Simulations. Nuclear Engineering and Design, 246, 98-106.
https://doi.org/10.1016/j.nucengdes.2011.11.016
[43]  Gajev, I., Ma, W. and Kozlowski, T. (2014) Sensitivity Analysis of Input Uncertain Parameters on BWR Stability Using TRACE/PARCS. Annals of Nuclear Energy, 67, 49-58.
https://doi.org/10.1016/j.anucene.2013.10.016
[44]  Mesado, C., Garcia-Fenoll, M., Miró, R., et al. (2015) Control Rod Drop Transient: Uncertainty and Sensitivity Analysis of Thermal-Hydraulic Variables Using a 3D Model with TRACE V5.0P3/PARCS 3.0. 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-16), Chicago, 30 August-4 September 2015, 611-626.
[45]  Pericas, R., Ivanov, K., Reventós, F., et al. (2017) Comparison of Best-Estimate plus Uncertainty and Conservative Methodologies for a PWR MSLB Analysis Using a Coupled 3-D Neu-tron-Kinetics/Thermal-Hydraulic Code. Nuclear Technology, 198, 193-201.
https://doi.org/10.1080/00295450.2017.1299493
[46]  Miglierini, B., Kozlowski, T. and Kopecek, V. (2019) Un-certainty Analysis of Rod Ejection Accident in VVER-1000 Reactor. Annals of Nuclear Energy, 132, 628-635.
https://doi.org/10.1016/j.anucene.2019.06.061
[47]  Zeng, K., Hou, J., Ivanov, K., et al. (2019) Uncertainty Quanti-fication and Propagation of Multiphysics Simulation of the Pressurized Water Reactor Core. Nuclear Technology, 205, 1618-1637.
https://doi.org/10.1080/00295450.2019.1580533
[48]  Salah, A.B., Kliem, S., Rohde, U., et al. (2006) Uncertainty and Sensitivity Analyses of the Kozloduy Pump Trip Test Using Coupled Thermal-Hydraulic 3D Kinetics Code. Nuclear Engineering and Design, 236, 1240-1255.
https://doi.org/10.1016/j.nucengdes.2005.11.005
[49]  Mesado, C., Soler, A., Barrachina, T., et al. (2012) Uncer-tainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation. Science and Technology of Nuclear Installations, 2012, Article ID: 625878.
https://doi.org/10.1155/2012/625878
[50]  Grgic, D., Cavlina, N., Petruzzi, A., et al. (2013) Coupled Code Analysis of the Rod Withdrawal at Power Accident including Uncertainty Evaluation Using CIAU-TN Method.
[51]  Pan, X., Jia, B., Han, J., et al. (2017) Systematic and Quantitative Uncertainty Analysis for Rod Ejection Accident of Pressurized Wa-ter Reactor. Energy Procedia, 127, 369-376.
https://doi.org/10.1016/j.egypro.2017.08.086
[52]  Avvakumov, A., Malofeev, V. and Sidorov, V. (2007) Spatial Effects and Uncertainty Analysis for Rod Ejection Accidents in a PWR. Of-fice of Nuclear Regulatory Research, US Nuclear Regulatory Commission.
[53]  Panka, I. (2004) Uncertainty Analysis for Control Rod Ejection Accidents Simulated by KIKO3D/TRABCO Code System.
[54]  Pasichnyk, I., Nikonov, S., Zwermann, W., et al. (2016) Coupled Code Analysis of Uncertainty and Sensitivity of Kalinin-3 Benchmark. Kerntechnik, 81, 427-431.
https://doi.org/10.3139/124.110713
[55]  Perin, Y. and Escalante, J.J. (2017) Application of the Best-Estimate plus Uncertainty Approach on a BWR ATWS Transient Using the NURESIM European Code Platform. Nuclear Engineering and Design, 321, 48-56.
https://doi.org/10.1016/j.nucengdes.2017.05.018
[56]  Le Pallec, J.C., Studer, E. and Royer, E. (2003) PWR Rod Ejection Accident: Uncertainty Analysis on a High Burn-Up Core Configuration.
[57]  Delipei, G., Garnier, J., Le Pallec, J.C., et al. (2018) Multi-Physics Uncertainties Propagation in a PWR Rod Ejection Accident Modeling-Analysis Meth-odology and First Results. ANS Best Estimate plus Uncertainty International Conference (BEPU 2018), Lucca, 13-18 May 2018.
[58]  Delipei, G.K., Garnier, J., Le Pallec, J.C., et al. (2019) Uncertainty Analysis Methodology for Mul-ti-Physics Coupled Rod Ejection Accident. International Conference on Mathematics and Computational Methods Ap-plied to Nuclear Science and Engineering (M&C 2019), Portland, 25-29 August 2019.
[59]  Sargeni, A. and Ivanov, E. (2021) An IRSN Contribution to the UAM Project: Thermal-Hydraulic and Neutronic Uncertainties Propagation in a Rod Ejection, First Results. EPJ Web of Conferences. EDP Sciences, 247, Article ID: 07003.
https://doi.org/10.1051/epjconf/202124707003
[60]  杨文, 田兆斐, 陈广亮. 基于确定性采样的不确定性分析[J]. 核动力工程, 2020, 41(S1): 42-45.
[61]  郭家丰. 压水堆燃料棒束物理-热工耦合计算与不确定性分析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2020.
[62]  雷洲阳. 基于CFD物理热工耦合的池式快堆UTOP事故不确定性分析研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2021.
[63]  Delipei, G.K., Rouxelin, P., Abarca, A., et al. (2022) CTF-PARCS Core Multi-Physics Computational Framework for Efficient LWR Steady-State, Depletion and Transient Uncertainty Quantification. Energies, 15, Article No. 5226.
https://doi.org/10.3390/en15145226
[64]  Popova, E.D. and Elishakoff, I. (2020) Novel Interval Model Applied to Derived Variables in Static and Structural Problems. Archive of Applied Mechanics, 90, 869-881.
https://doi.org/10.1007/s00419-019-01644-8
[65]  Naskar, S., Mukhopadhyay, T. and Sriramula, S. (2019) Spa-tially Varying Fuzzy Multi-Scale Uncertainty Propagation in Unidirectional Fibre Reinforced Composites. Composite Structures, 209, 940-967.
https://doi.org/10.1016/j.compstruct.2018.09.090
[66]  Shafer, G. (2016) A Mathematical Theory of Evidence Turns 40. International Journal of Approximate Reasoning, 79, 7-25.
https://doi.org/10.1016/j.ijar.2016.07.009
[67]  Liu, H.B., Jiang, C., Jia, X.Y., et al. (2018) A New Uncertainty Propagation Method for Problems with Parameterized Proba-bility-Boxes. Reliability Engineering & System Safety, 172, 64-73.
https://doi.org/10.1016/j.ress.2017.12.004
[68]  张保强, 苏国强, 展铭, 等. 概率盒框架下多响应模型确认度量方法[J]. 控制与决策, 2019, 34(12): 2642-2648.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413