全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于导叶端弯优化工业汽轮机的级性能
Optimization of Stage Performance of Industrial Steam Turbine Based on Bowed Nozzle Guide Vane

DOI: 10.12677/MOS.2024.131037, PP. 387-397

Keywords: 弯叶片,气动优化,人工神经网络,二次流损失,动叶匹配
Bowed Vane
, Aerodynamic Optimization, Artificial Neural Network, Secondary Flow Loss, Rotor Blade Matching

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于弯叶片的气动原理,应用人工神经网络代理模型和遗传优化算法,对某型工业汽轮机的高压级导叶进行气动性能优化。经CFD模拟评估,导叶流动损失降低了6.65%,按焓降折合级效率提升0.28%,但实际级效率仅提升0.16%。导叶出口流场分析表明,端弯导叶的出口气流角沿叶高在端区发生了显著变化,其后动叶端区的进口冲角增加了10?~20?。修改动叶两端叶型,与导叶气流角匹配后,消除了冲角损失,等熵效率提高0.4%。本文结果说明导叶经过端弯优化后,匹配动叶气动设计的必要性。
Based on the working principle of the bowed blade, one guide vane of high-pressure stage of an in-dustrial steam turbine is optimized by means of a surrogate model of artificial neural network and genetic algorithm. After CFD evaluation, the flow loss through the optimized bowed guide vane is reduced by 6.65 percent which is expected to raise the stage efficiency by 0.28 percent. However, the actual stage efficiency is calculated to rise only 0.16 percent. Analyzing the exit flow of the guide vane reveals that the flow angles vary significantly at both ends of the rotor blade. The incidence of the rotor blade is raised from 10 to 20 degrees near the end wall. Blade profiles at the tip and hub sections are modified to match the inlet flow. Incidence is reduced to raise the stage efficiency by 0.4 percent. This paper demonstrates the necessity to retrofit the rotor blade to match a bowed guide vane.

References

[1]  Denton, J.D. (1993) The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines. Journal of Turbomachinery, 115, 621-656.
https://doi.org/10.1115/1.2929299
[2]  蒋彬, 罗凯, 郑涛. 微型冲动式部分进气涡轮机的流场特性及气动损失[J]. 热能动力工程, 2015, 30(6): 873-879+969-970.
[3]  Wang, C., Song, J., You, D., et al. (2022) Combined Heat and Power Plants Integrated with Steam Turbine Renovations: Optimal Dispatch for Maximizing the Consumption of Renewable Energy. Energy Conversion and Management, 258, Article 115561.
https://doi.org/10.1016/j.enconman.2022.115561
[4]  康磊, 徐巍, 张燕, 等. 跨音速正弯均匀加载叶片数值与试验研究[J]. 热能动力工程, 2016, 31(3): 56-62+139.
[5]  王仲奇, 韩万今, 徐文远, 赵桂林. 在低展弦比透平静叶栅中叶片的弯曲作用[J]. 工程热物理学报, 1990(3): 255-262.
[6]  王仲奇, 韩万今, 徐文远. 低展弦比透平叶片弯曲方法研究[J]. 工程热物理学报, 1995(1): 35-38.
[7]  谭春青, 张华良, 韩万金, 等. 采用弯叶片控制高负荷涡轮叶栅内附面层迁移的机理分析[J]. 热能动力工程, 2009, 24(6): 700-704+814.
[8]  谢婕, 夏晨, 张远森, 李传鹏. 低展弦比微型轴流涡轮弯叶片设计[J]. 南京航空航天大学学报, 2015, 47(1): 160-166.
[9]  毛凯, 李昌奂, 张聃, 蒋建园. 基于导叶端弯的小展弦比燃气涡轮优化设计[J]. 火箭推进, 2019, 45(6): 23-28.
[10]  Jansen, M. and Ulm, W. (1995) Modern Blade Design for Improving Steam Turbine Efficiency. Ver?ffen-tlichungen des Vereins Deutscher Ingenieure, 1185, 277-290.
[11]  隋秀明, 董甜甜, 周庆晖, 等. 高负荷低展弦比氦涡轮端壁损失机理研究[J]. 推进技术, 2021, 42(3): 540-549.
[12]  韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.
[13]  Tsutsumi, M., Hirano, Y., Matsuda, T., et al. (2008) Study on Secondary Flow within Low Aspect Ratio Steam Turbine Cascade (1st Report). Transactions of the Japan Society of Me-chanical Engineers, Series B, 74, 2067-2074.
https://doi.org/10.1299/kikaib.74.2067
[14]  陈海生, 谭春青, Yamamoto, A., 梁锡智. 低展弦比涡轮静叶栅叶片正弯曲作用的试验研究[J]. 机械工程学报, 2005(2): 65-70+76.
[15]  谭春青, 陈海生, 康顺, 蒋洪德, 蔡睿贤, 厉树廉. 一种典型透平静叶型叶片正弯曲作用的实验研究[J]. 工程热物理学报, 2001(3): 294-297.
[16]  Xue, X., Wang, S., Luo, L., et al. (2020) The Compound Bowing Design in a Highly Loaded Linear Cascade with Large Turning Angle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234, 2323-2336.
https://doi.org/10.1177/0954410020926658
[17]  Yang, L., Chen, W., Liu, W., et al. (2020) Random Noise Attenuation Based on Residual Convolutional Neural Network in Seismic Datasets. IEEE Access, 8, 30271-30286.
https://doi.org/10.1109/ACCESS.2020.2972464
[18]  Nagasubramanian, K., Jones, S., Sarkar, S., et al. (2018) Hyper-spectral Band Selection Using Genetic Algorithm and Support Vector Machines for Early Identification of Charcoal Rot Disease in Soybean Stems. Plant Methods, 14, Article No. 86.
https://doi.org/10.1186/s13007-018-0349-9
[19]  Xu, L.H., Tao, G. and Wang, W.Q. (2022) Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method. Renewable Energy, 198, 367-379.
https://doi.org/10.1016/j.renene.2022.08.084

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413