全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diatom and Diatomite: Different Focus on Natural Media to Material Science Path

DOI: 10.4236/ajac.2024.151001, PP. 1-29

Keywords: Diatom, Diatomite, Bio-Silica, Purification, Frustule

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.

References

[1]  Tréguer, P., Nelson, D.M., Van Bennekom, A.J., et al. (1995) The Silica Balance in the World Ocean: A Reestimate. Science, 268, 375-379.
https://doi.org/10.1126/science.268.5209.375
[2]  Granum, E., Raven, J.A. and Leegood, R.C. (2005) How Do Marine Diatoms Fix 10 Billion Tonnes of Inorganic Carbon per Year? Canadian Journal of Botany, 83, 898-908.
https://doi.org/10.1139/b05-077
[3]  Mansilla, C., Novais, M.H., Faber, E., et al. (2016) On the 3D Reconstruction of Diatom Frustules: A Novel Method, Applications, and Limitations. Journal of Applied Phycology, 28, 1097-1110.
https://doi.org/10.1007/s10811-015-0653-y
[4]  Darouich, O., Baaziz, W., Ihiawakrim, D., et al. (2022) 3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus sp. Diatoms Using a Combination of Tomographic Techniques. Nanoscale Advances, 4, 1587-1598.
https://doi.org/10.1039/D1NA00691F
[5]  Wang, Y., Pan, J., Cai, J., et al. (2011) Assembling and Patterning of Diatom Frustules onto PDMS Substrates Using Photoassisted Chemical Bonding. Chemistry Letters, 40, 1354-1356.
https://doi.org/10.1246/cl.2011.1354
[6]  Losic, D., Mitchell, J.G. and Voelcker, N.H. (2009) Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials, 21, 2947-2958.
https://doi.org/10.1002/adma.200803778
[7]  Losic, D., Rosengarten, G., Mitchell, J.G., et al. (2006) Pore Architecture of Diatom Frustules: Potential Nanostructured Membranes for Molecular and Particle Separations. Journal of Nanoscience and Nanotechnology, 6, 982-989.
https://doi.org/10.1166/jnn.2006.174
[8]  Zhang, D., Wang, Y., Cai, J., et al. (2012) Bio-Manufacturing Technology Based on Diatom Micro- and Nanostructure. Chinese Science Bulletin, 57, 3836-3849.
https://doi.org/10.1007/s11434-012-5410-x
[9]  Round, F.E., Crawford, R.M. and Mann, D.G. (1990) The Diatoms: Biology and Morphology of the Genera. Journal of the Marine Biological Association of the United Kingdom, 70, 924.
https://doi.org/10.1017/S0025315400059245
[10]  Sumper, M. (2002) A Phase Separation Model for the Nanopatterning of Diatom Biosilica. Science, 295, 2430-2433.
https://doi.org/10.1126/science.1070026
[11]  Levitan, O., Dinamarca, J., Hochman, G. and Falkowski, P.G. (2014) Diatoms: A Fossil Fuel of the Future. Trends in Biotechnology, 32, 117-124.
https://doi.org/10.1016/j.tibtech.2014.01.004
[12]  Shan, R., Zhao, C., Yuan, H., et al. (2017) Transesterification of Vegetable Oil Using Stable Natural Diatomite-Supported Catalyst. Energy Conversion and Management, 138, 547-555.
https://doi.org/10.1016/j.enconman.2017.02.028
[13]  Lopez, P.J., Desclés, J., Allen, A.E. and Bowler, C. (2005) Prospects in Diatom Research. Current Opinion in Biotechnology, 16, 180-186.
https://doi.org/10.1016/j.copbio.2005.02.002
[14]  Maher, S., Kumeria, T., Aw, M.S. and Losic, D. (2018) Diatom Silica for Biomedical Applications: Recent Progress and Advances. Advanced Healthcare Materials, 7, Article ID: 1800552.
https://doi.org/10.1002/adhm.201800552
[15]  Rea, I. and De Stefano, L. (2019) Recent Advances on Diatom-Based Biosensors. Sensors, 19, Article 5208.
https://doi.org/10.3390/s19235208
[16]  Shi, M., Li, J., Cai, J., et al. (2017) Nano Sulfur-Coated Diatomite for Enhanced Chromate Removal by Sulfide Reduction. Journal of Nanoscience and Nanotechnology, 17, 6686-6691.
https://doi.org/10.1166/jnn.2017.14474
[17]  Jiang, W., Luo, S., Liu, P., et al. (2014) Purification of Biosilica from Living Diatoms by a Two-Step Acid Cleaning and Baking Method. Journal of Applied Phycology, 26, 1511-1518.
https://doi.org/10.1007/s10811-013-0192-3
[18]  Morales, L.V., Sigman, D.M., Horn, M.G. and Robinson, R.S. (2013) Cleaning Methods for the Isotopic Determination of Diatombound Nitrogen in Non-Fossil Diatom Frustules: Cleaning Diatoms for N Isotope Analysis. Limnology and Oceanography: Methods, 11, 101-112.
https://doi.org/10.4319/lom.2013.11.101
[19]  Wang, Y., Cai, J., Jiang, Y., Jiang, X.G. and Zhang, D.Y. (2013) Preparation of Biosilica Structures from Frustules of Diatoms and Their Applications: Current State and Perspectives. Applied Microbiology and Biotechnology, 97, 453-460.
https://doi.org/10.1007/s00253-012-4568-0
[20]  Delasoie, J. and Zobi, F. (2019) Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems. Pharmaceutics, 11, Article 537.
https://doi.org/10.3390/pharmaceutics11100537
[21]  Zhang, D., Wang, Y., Pan, J. and Cai, J. (2010) Separation of Diatom Valves and Girdle Bands from Coscinodiscus Diatomite by Settling Method. Journal of Materials Science, 45, 5736-5741.
https://doi.org/10.1007/s10853-010-4642-x
[22]  Morse, D.E. (1999) Silicon Biotechnology: Harnessing Biological Silica Production to Construct New Materials. Trends in Biotechnology, 17, 230-232.
https://doi.org/10.1016/S0167-7799(99)01309-8
[23]  Rea, I., Terracciano, M. and De Stefano, L. (2017) Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Advanced Healthcare Materials, 6, Article ID: 1601125.
https://doi.org/10.1002/adhm.201601125
[24]  Buchner, G.A., Stepputat, K.J., Zimmermann, A.W. and Schomäcker, R. (2019) Specifying Technology Readiness Levels for the Chemical Industry. Industrial & Engineering Chemistry Research, 58, 6957-6969.
https://doi.org/10.1021/acs.iecr.8b05693
[25]  Gélabert, A., Pokrovsky, O.S., Schott, J., et al. (2004) Study of Diatoms/Aqueous Solution Interface. I. Acid-Base Equilibria and Spectroscopic Observation of Freshwater and Marine Species. Geochimica et Cosmochimica Acta, 68, 4039-4058.
https://doi.org/10.1016/j.gca.2004.01.011
[26]  Hadjadj Aoul, O. (2000) Etude de supports de colonnes chromatographiques à base de matériaux locaux algériens, Algérie. Ecole Nationale Polytechnique.
http://catalogue2.biblio.enp.edu.dz/index.php?lvl=author_see&id=7149
[27]  Vanden Broeck, J. and Querio, A. (1960) La diatomite (Kieselgur): Les diatomées et leurs emplois dans l’industrie. 3e édition.
https://ulysse.univ-lorraine.fr/discovery/fulldisplay?vid=33UDL_INST:UDL&docid=alma991002218459705596&lang=fr&context=L&adaptor=Local%20Search%20Engine
[28]  Garnier, A. (2013) Platine sur silice: Exemples réussis de synthèse par voie organométallique pour la catalyse hétérogène: Validation par l’adsorption et la réactivité du CO. Université de Strasbourg.
https://hal.archives-ouvertes.fr/tel-01124197/
[29]  Pernet, F., Malet, N., Pastoureaud, A., et al. (2012) Marine Diatoms Sustain Growth of Bivalves in a Mediterranean Lagoon. Journal of Sea Research, 68, 20-32.
https://doi.org/10.1016/j.seares.2011.11.004
[30]  Kang, J.S., Kim, H.S. and Lee, J.H. (1996) Morphological Variations of the Marine Diatom Thalassiosira weissflogii under Culture Conditions. Algae, 11, 23-34.
[31]  Lee, S.H., Bae, Z.U., Kim, K.W., et al. (1997) Determination of Calcium Carbonate in Limestone by Attenuated Total Reflectance Fourier Transform Infrared Spectrometry. Analytical Sciences, 13, 93-96.
https://doi.org/10.2116/analsci.13.Supplement_93
[32]  Youssef, I., Sall, S., Dintzer, T., et al. (2019) Forward Looking Analysis Approach to Assess Copper Acetate Thermal Decomposition Reaction Mechanism. American Journal of Analytical Chemistry, 10, 153-170.
https://doi.org/10.4236/ajac.2019.105014
[33]  Lettieri, S., Setaro, A., De Stefano, L., et al. (2008) The Gas-Detection Properties of Light-Emitting Diatoms: The Gas-Detection Properties of Light-Emitting Diatoms. Advanced Functional Materials, 18, 1257-1264.
https://doi.org/10.1002/adfm.200701124
[34]  Li, Y., Chian, W., Wang, X., et al. (2011) Coordination Assembly and Characterization of Red-Emitting Europium (III) Organic/Inorganic Polymeric Hybrids: Photochemistry and Photobiology. Photochemistry and Photobiology, 87, 618-625.
https://doi.org/10.1111/j.1751-1097.2011.00912.x
[35]  Hanane, B., Jihad, R., Naima, B., et al. (2022) Characterisation and Valorisation of the Moroccan Diatomite. Journal of Geoscience and Environment Protection, 10, 109-134.
https://doi.org/10.4236/gep.2022.102008
[36]  Meyer-Jacob, C., Vogel, H., Boxberg, F., et al. (2014) Independent Measurement of Biogenic Silica in Sediments by FTIR Spectroscopy and PLS Regression. Journal of Paleolimnology, 52, 245-255.
https://doi.org/10.1007/s10933-014-9791-5
[37]  Mcheik, A. (2018) étude des propriétés photoniques de diatomées. Ph.D. Thesis, Sorbonne Université, Paris.
[38]  ALOthman, Z. (2012) A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5, 2874-2902.
https://doi.org/10.3390/ma5122874
[39]  De Lange, M.F., Vlugt, T.J.H., Gascon, J., et al. (2014) Adsorptive Characterization of Porous Solids: Error Analysis Guides the Way. Microporous and Mesoporous Materials, 200, 199-215.
https://doi.org/10.1016/j.micromeso.2014.08.048
[40]  Groen, J.C., Peffer, L.A.A. and Pérez-Ramirez, J. (2003) Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60, 1-17.
https://doi.org/10.1016/S1387-1811(03)00339-1
[41]  Lewin, J.C. (1961) The Dissolution of Silica from Diatom Walls. Geochimica et Cosmochimica Acta, 21, 182-198.
https://doi.org/10.1016/S0016-7037(61)80054-9
[42]  Iler, R.K. (2004) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York.
[43]  Dugger, D.L., Stanton, J.H., Irby, B.N., et al. (1964) The Exchange of Twenty Metal Ions with the Weakly Acidic Silanol Group of Silica Gel1,2. The Journal of Physical Chemistry A, 68, 757-760.
https://doi.org/10.1021/j100786a007
[44]  Hurd, D.C. (1973) Interactions of Biogenic Opal, Sediment and Seawater in the Central Equatorial Pacific. Geochimica et Cosmochimica Acta, 37, 2257-2282.
https://doi.org/10.1016/0016-7037(73)90103-8
[45]  Badaut, D. and Risacher, F. (1983) Authigenic Smectite on Diatom Frustules in Bolivian Saline Lakes. Geochimica et Cosmochimica Acta, 47, 363-375.
https://doi.org/10.1016/0016-7037(83)90259-4
[46]  Fujii, T., de Groot, F.M.F., Sawatzky, G.A., et al. (1999) In Situ XPS Analysis of Various Iron Oxide Films Grown by NO2-Assisted Molecular-Beam Epitaxy. Physical Review B, 59, 3195-3202.
https://doi.org/10.1103/PhysRevB.59.3195
[47]  van Bommel, M.J. and de Haan, A.B. (1994) Drying of Silica Gels with Supercritical Carbon Dioxide. Journal of Materials Science, 29, 943-948.
https://doi.org/10.1007/BF00351414
[48]  Uwineza, P.A. and Waśkiewicz, A. (2020) Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules, 25, Article 3847.
https://doi.org/10.3390/molecules25173847
[49]  Gutmann, V. (1976) Empirical Parameters for Donor and Acceptor Properties of Solvents. Electrochimica Acta, 21, 661-670.
https://doi.org/10.1016/0013-4686(76)85034-7
[50]  Saint Flour, C. and Papirer, E. (1983) Gas-Solid Chromatography: A Quick Method of Estimating Surface Free Energy Variations Induced by the Treatment of Short Glass Fibers. Journal of Colloid and Interface Science, 91, 69-75.
https://doi.org/10.1016/0021-9797(83)90314-4
[51]  Van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1988) Interfacial Lifshitzvan der Waals and Polar Interactions in Macroscopic Systems. Chemical Reviews, 88, 927-941.
https://doi.org/10.1021/cr00088a006
[52]  Gutmann, V. (1978) The Donor-Acceptor Approach to Molecular Interactions. Plenum Press, New York.
https://doi.org/10.1007/978-1-4615-8825-2
[53]  Laurence, C. and Gal, J.F. (2010) Lewis Basicity and Affinity Scales: Data and Measurement. John Wiley, Chichester.
https://doi.org/10.1002/9780470681909
[54]  Bauer, F., Meyer, R., Bertmer, M., et al. (2021) Silanization of Siliceous Materials, Part 3: Modification of Surface Energy and Acid-Base Properties of Silica Nanoparticles Determined by Inverse Gas Chromatography (IGC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 618, Article ID: 126472.
https://doi.org/10.1016/j.colsurfa.2021.126472
[55]  Swann, G.E.A. and Leng, M.J. (2009) A Review of Diatom δ18O in Palaeoceanography. Quaternary Science Reviews, 28, 384-398.
https://doi.org/10.1016/j.quascirev.2008.11.002
[56]  Zahn, R.K., Zahn-Daimler, G. and Beyer, R. (1988) Highly Protective Alkalinization by Ammonia Vapor Diffusion in Viscosimetric DNA Damage Assessment. Analytical Biochemistry, 168, 387-397.
https://doi.org/10.1016/0003-2697(88)90334-X
[57]  Shchukarev, A. and Korolkov, D. (2004) XPS Study of Group IA Carbonates. Open Chemistry, 2, 347-362.
https://doi.org/10.2478/BF02475578
[58]  Mcheik, A., Cassaignon, S., Livage, J., et al. (2018) Optical Properties of Nanostructured Silica Structures from Marine Organisms. Frontiers in Marine Science, 5, Article 318703.
https://doi.org/10.3389/fmars.2018.00123
[59]  Bhardwaj, V. and Mirliss, M.J. (2009) Diatomaceous Earth Filtration for Drinking Water. In: Lehr, J.H. and Keeley, J., Eds., Water Encyclopedia, John Wiley & Sons, Hoboken, 2947-2958.
[60]  Chen, X., Wang, C., Baker, E. and Sun, C. (2015) Numerical and Experimental Investigation of Light Trapping Effect of Nanostructured Diatom Frustules. Scientific Reports, 5, Article No. 11977.
https://doi.org/10.1038/srep11977
[61]  Wang, Y., Pan, J., Cai, J., et al. (2012) Floating Assembly of Diatom Coscinodiscus sp. Microshells. Biochemical and Biophysical Research Communications, 420, 1-5.
https://doi.org/10.1016/j.bbrc.2012.02.080
[62]  Ye, X. and Qi, L. (2011) Two-Dimensionally Patterned Nanostructures Based on Monolayer Colloidal Crystals: Controllable Fabrication, Assembly, and Applications. Nano Today, 6, 608-631.
https://doi.org/10.1016/j.nantod.2011.10.002
[63]  Nandi, M., Das, T., Saha, S., et al. (2018) Direct Synthesis of Magnesium Doped Mesoporous Silica: Their Catalytic Activity in Knoevenagel Condensation. Materials Today: Proceedings, 5, 10007-10015.
https://doi.org/10.1016/j.matpr.2017.10.199
[64]  Astrov, Y.A., Shuman, V.B., Portsel, L.М., et al. (2017) Diffusion Doping of Silicon with Magnesium. Physica Status Solidi (a), 214, Article ID: 1700192.
https://doi.org/10.1002/pssa.201700192
[65]  Yabu, H., Matsuo, Y., Yamada, T., et al. (2020) Highly Porous Magnesium Silicide Honeycombs Prepared by Magnesium Vapor Annealing of Silica-Coated Polymer Honeycomb Films toward Ultralightweight Thermoelectric Materials. Chemistry of Materials, 32, 10176-10183.
https://doi.org/10.1021/acs.chemmater.0c03696
[66]  Leonardo, S., Prieto-Simón, B. and Campàs, M. (2016) Past, Present and Future of Diatoms in Biosensing. TrAC Trends in Analytical Chemistry, 79, 276-285.
https://doi.org/10.1016/j.trac.2015.11.022
[67]  Wang, J.K. and Seibert, M. (2017) Prospects for Commercial Production of Diatoms. Biotechnology for Biofuels, 10, Article No. 16.
https://doi.org/10.1186/s13068-017-0699-y
[68]  Wang, C., Yan, C., Qiu, J., et al. (2021) Food Web Biomagnification of the Neurotoxin β-N-Methylamino-L-Alanine in a Diatom-Dominated Marine Ecosystem in China. Journal of Hazardous Materials, 404, Article ID: 124217.
https://doi.org/10.1016/j.jhazmat.2020.124217
[69]  Van Eynde, E., Lenaerts, B., Tytgat, T., et al. (2014) Effect of Pretreatment and Temperature on the Properties of Pinnularia biosilica Frustules. RSC Advances, 4, 56200-56206.
https://doi.org/10.1039/C4RA09305D
[70]  Chetia, L., Kalita, D. and Ahmed, G.A. (2017) Enhanced Photocatalytic Degradation by Diatom Templated Mixed Phase Titania Nanostructure. Journal of Photochemistry and Photobiology A: Chemistry, 338, 134-145.
https://doi.org/10.1016/j.jphotochem.2017.01.035
[71]  Snelling, A.M., Swann, G.E.A., Leng, M.J., et al. (2013) A Micro-Manipulation Technique for the Purification of Diatoms for Isotope and Geochemical Analysis. Silicon, 5, 13-17.
https://doi.org/10.1007/s12633-012-9115-1

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133