Performance Evaluation of Two Series Vertical Flow Filters for Wastewater Treatment: A Case Study of the Prototype Installed at Gaston Berger University, Saint-Louis, Senegal
This paper evaluates the efficacy of two sequential vertical flow filters
(VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment
system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of
two cells (FV2a and FV2b), each designed to reduce various physicochemical and
microbiological pollutants from wastewater. Quantitative analyses show
significant reductions in electrical conductivity (from 1331 to 1061 μS/cm),
biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand
(COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and
phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly
in decreasing dissolved salts and BOD5 to remarkably low levels.
Microbiological assessments reveal a substantial reduction in fecal coliforms,
from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a
complete elimination of helminth eggs, achieving a 100% reduction rate in FV2.
The study highlights the impact of design parameters, such as filter material,
media depth, and plant species selection, on treatment outcomes. The findings
suggest that the judicious choice of these components is critical for
optimizing pollutant removal. For instance, different filtration materials show
varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant
reduction rates. In conclusion, VFFs emerge as a promising solution for
wastewater treatment, underscoring the importance of design optimization to
enhance system efficiency. Continuous monitoring and adaptation of treatment
practices are imperative to ensure water quality, allowing for safe
environmental discharge or water reuse. The research advocates for ongoing
improvements in wastewater treatment technologies, considering the
environmental challenges of the current era. The study concludes with a call
for further research to maximize the effectiveness of VFFs in water management.
References
[1]
C.C. mondiale d’éthique des connaissances scientifiques et des technologies (2018) Rapport de la COMEST sur: L’éthique de l’eau: Océans, eau douce, zones côtières.
[2]
United Nations (2015) Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York.
[3]
Ghazal, H.K. (2022) Aperçu des technologies physiques, chimiques et hybrides actuelles utilisées pour le traitement des eaux usées contaminées par des produits pharmaceutiques. J. Prod. Plus Propre, 361, Article ID: 132079.
[4]
Taha, D.S. (2023) Using of Constructed Wetlands in the Treatment of Wastewater: A Review for Operation and Performance: Review for Using of Constructed Wetlands in The Treatment of Wastewater: Operation and Performance. Journal of Engineering, 29, 169-188. https://doi.org/10.31026/j.eng.2023.07.11
[5]
Yomo, M.M. (2019) Examining Water Security in the Challenging Environment in Togo, West Africa. Water, 11, Article No. 231. https://doi.org/10.3390/w11020231
[6]
Alvi, M.B.-O. (2023) Deep Learning in Wastewater Treatment: A Critical Review. Water Research, 245, Article ID: 120518.
https://doi.org/10.1016/j.watres.2023.120518
[7]
Bourrier, R., Satin, M. and Selmi, B. (2010) Guide technique de l’assainissement. éd. le Moniteur, Paris. https://books.google.sn/books?id=LzLDYgEACAAJ
[8]
Public Health Association (APHA), American Water-Works Association (AWWA) and American Environment (2005) Standard Methods for the Examination of Water and Wastewater. Baltimore.
[9]
AFNOR (1999) Association française de normalisation, Qualité de l’eau: Recueil, environnement, 4 vols. Paris-La Défense.
[10]
LATEU. Présentation|LATEU|Laboratoire de Traitement des Eaux Usées.
https://lateu.ucad.sn/article/pr%C3%A9sentation
[11]
IBM SPSS Statistics. https://www.ibm.com/products/spss-statistics
[12]
Ji, Z.T. (2022) Substrats de zones humides construites: Un examen du développement, des mécanismes de fonction et de l’application dans l’élimination des contaminants. Chemosphère, 286, Article ID: 131564.
[13]
Shingare, R.P. (2019) Constructed Wetland for Wastewater Reuse: Role and Efficiency in Removing Enteric Pathogens. Journal of Environmental Management, 246, 444-461.
https://doi.org/10.1016/j.jenvman.2019.05.157
[14]
Torrens, A.F. (2021) Conception et performance d’une zone humide hybride innovante pour le traitement durable du lisier de porc dans les petites exploitations. Frontiers in Environmental Science, 8, Article ID: 577186.
[15]
Ama-Cauphys, B.A. (2022) Influence de la hauteur du massif filtrant sur l’élimination des polluants azotés des eaux usées domestiques dans un filtre à sable à alimentation intermittente. International Journal of Innovation and Applied Studies, 37, 36-48.
[16]
Boukehil, M. (2022) Etude de l’importance des plantes phytoépuratrice, eaux usées et sols. Doctoral Dissertation, Université Larbi Tébessi-Tébessa, Tébessa.
[17]
Galve, J.C. (2021) Series Type Vertical Subsurface Flow Constructed Wetlands for Dairy Farm Wastewater Treatment. Civil Engineering Journal, 7, 292-303.
https://doi.org/10.28991/cej-2021-03091654
[18]
Alaki-Issi Massimapatom, S.E. (2019) Impact du rejet des eaux usées industrielles sur la qualité physico-chimique des eaux urbaines: Cas du ruisseau Kpiyimboua de la ville Kara. Scientific African, 15, 116-129.
WHO (2022) Guidelines for Drinking-Water Quality.
https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1
[21]
Règlement (UE) 2020/741 du Parlement européen et du Conseil du 25 mai 2020 relatif aux exigences minimales applicables à la réutilisation de l’eau (Texte présentant de l’intérêt pour l’EEE), Vol. 177.
http://data.europa.eu/eli/reg/2020/741/oj/fra
[22]
Romeyssa, M. (2021) Efficacité de traitement de la station d’épuration des eaux usées de Ferdjioua Ain Beida ahariech-Mila. Doctoral Dissertation, University Center of Abdalhafid Boussouf-MILA, Mila.
[23]
Metcalf & Eddy, et al. (2014) Wastewater Engineering: Treatment and Resource Recovery. McGraw Hill Education, New York.
[24]
Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003) Wastewater Engineering Treatment and Reuse (No. 628.3 T252s). US McGraw-Hill High Education, Boston.
Spellman, F.R. (2013) Current Issues in Water and Wastewater Treatment Operations. In: Spellman, F.R., Ed., Handbook of Water and Wastewater Treatment Plant Operations, CRC Press, Boca Raton, 923. https://doi.org/10.1201/b15579
Henze, M., Harremoes, P., Jansen, J.L. and Arvin, E. (2002) Wastewater Treatment: Biological and Chemical Process. Springer, Berlin.
https://doi.org/10.1007/978-3-662-04806-1
Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003) Metcalf & Eddy Wastewater Engineering: Treatment and Reuse. Vol. 4, McGraw Hill, New York, 361-411.
[31]
Sidhu, J.P.S., Hodgers, L., Ahmed, W., Chong, M.N. and Toze, S. (2012) Prevalence of Human Pathogens and Indicators in Stormwater Runoff in Brisbane, Australia. Water Research, 46, 6652-6660. https://doi.org/10.1016/j.watres.2012.03.012
[32]
Craun, G.F., et al. (2010) Causes of Outbreaks Associated with Drinking Water in the United States from 1971 to 2006. Clinical Microbiology Reviews, 23, 507-528.
https://doi.org/10.1128/CMR.00077-09
[33]
Crompton, D.W. and Savioli, L. (1993) Intestinal Parasitic Infections and Urbanization. Bulletin of the World Health Organization, 71, 1.
[34]
Kadlec, R.H. and Wallace, S. (2008) Treatment Wetlands. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420012514
[35]
World Health Organization (2006) WHO Guidelines for the Safe Use of Wasterwater Excreta and Greywater. Vol. 1, World Health Organization, Geneva.
https://www.who.int/publications/i/item/9241546859
[36]
Tiedje, J.M. (1988) Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. In: Zehnder, A.J.B., Ed., Biology of Anaerobic Microorganisms, John Wiley and Sons, New York, 179-244.
[37]
Le Coustumer, S., Fletcher, T.D., Deletic, A., Barraud, S. and Lewis, J.F. (2009) Hydraulic Performance of Biofilter Systems for Stormwater Management: Influences of Design and Operation. Journal of Hydrology, 376, 16-23.
https://doi.org/10.1016/j.jhydrol.2009.07.012
[38]
Calestreme, A. (2002) Invasion de Typha australis dans le bassin du fleuve Sénégal. Thesis, UM2, Montpellier. https://agritrop.cirad.fr/511143/
[39]
Reddy, K.R. and DeLaune, R.D. (2008) Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton. https://doi.org/10.1201/9780203491454
[40]
Brix, H. (1997) Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Science & Technology, 35, 11-17. https://doi.org/10.2166/wst.1997.0154