全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Crystal Structure Study of CaSrFe0.75Co0.75Mn0.5O6−δ by Neutron Diffraction

DOI: 10.4236/msce.2024.121003, PP. 29-35

Keywords: XRD, Neutron Diffraction, Perovskite Oxides, Crystal Structure, Solid-State Reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

The crystal structure of CaSrFe0.75Co0.75Mn0.5O6δ is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75Co0.75Mn0.5O6δ, with potential implications for its applications in various technological and scientific domains.

References

[1]  Cohen, R.E. (1992) Origin of Ferroelectricity in Perovskite Oxides. Nature, 358, 136-138.
https://doi.org/10.1038/358136a0
[2]  Tyunina, M. (2020) Oxygen Vacancies in Perovskite Oxide Piezoelectrics. Materials, 13, 5596.
https://doi.org/10.3390/ma13245596
[3]  Kim, M., McNally, G.M., Kim, H.-H., Oudah, M., Gibbs, A.S., Manuel, P., et al. (2022) Superconductivity in (Ba,K)SbO3. Nature Mater, 21, 627-633.
https://doi.org/10.1038/s41563-022-01203-7
[4]  Hona, R.K. and Ramezanipour, F. (2019) Remarkable Oxygen-Evolution Activity of a Perovskite Oxide from the Ca2−xSrxFe2O6−δ Series. Angewandte Chemie International Edition, 58, 2060-2063.
https://doi.org/10.1002/anie.201813000
[5]  Hona, R.K., Karki, S.B. and Ramezanipour, F. (2020) Oxide Electrocatalysts Based on Earth-Abundant Metals for Both Hydrogen—And Oxygen-Evolution Reactions. ACS Sustainable Chemistry & Engineering, 8, 11549-11557.
https://doi.org/10.1021/acssuschemeng.0c02498
[6]  Shu, L., Sunarso, J., Hashim, S.S., Mao, J., Zhou, W., et al. (2019) Advanced Perovskite Anodes for Solid Oxide Fuel Cells: A Review. International Journal of Hydrogen Energy, 44, 31275-31304.
https://doi.org/10.1016/j.ijhydene.2019.09.220
[7]  Takeguchi, T., Yamanaka, T., Takahashi, H., Watanabe, H., Kuroki, T., et al. (2013) Layered Perovskite Oxide: A Reversible Air Electrode for Oxygen Evolution/Reduction in Rechargeable Metal-Air Batteries. Journal of the American Chemical Society, 135, 11125-11130.
https://doi.org/10.1021/ja403476v
[8]  Hona, R.K., Thapa, A.K., Ramezanipour, F. (2020) An Anode Material for Lithium-Ion Batteries Based on Oxygen-Deficient Perovskite Sr2Fe2O6−δ. ChemistrySelect, 5, 5706-5711.
https://doi.org/10.1002/slct.202000987
[9]  Hona, R.K., Karki, S.B., Cao, T., Mishra, R., Sterbinsky, G.E. and Ramezanipour, F. (2021) Sustainable Oxide Electrocatalyst for Hydrogen- and Oxygen-Evolution Reactions. ACS Catalysis, 11, 14605-14614.
https://doi.org/10.1021/acscatal.1c03196
[10]  Hona, R.K., Karki, S.B., Dhaliwal, G., Guinn, M. and Ramezanipour, F. (2022) High Thermal Insulation Properties of A2FeCoO6−δ (A = Ca, Sr). Journal of Materials Chemistry C, 10, 12569-12573.
https://doi.org/10.1039/D2TC03007A
[11]  Karki, S.B., Hona, R.K. and Ramezanipour, F. (2020) Effect of Structure on Sensor Properties of Oxygen-Deficient Perovskites, A2BB’O5 (A = Ca, Sr; B = Fe; B’ = Fe, Mn) for Oxygen, Carbon Dioxide and Carbon Monoxide Sensing. Journal of Electronic Materials, 49, 1557-1567.
https://doi.org/10.1007/s11664-019-07862-8
[12]  Kumar, A. (2021) Oxide Perovskites and Their Derivatives for Photovoltaics Applications. In: Kumar, A., Ed., Advanced Ceramics for Energy and Environmental Applications, 1st Edition, CRC Press, Boca Raton, 15.
[13]  Sanchez, S.N., Guinn, M., Phuyal, U.S., Dhaliwal, G.S. and Hona, R.K. (2023) Specific Heat Capacity of A2FeCoO6-δ (A = Ca or Sr). Journal of Materials Science and Chemical Engineering, 11, 1-10.
[14]  Hona, R.K., Guinn, M., Phuyal, U.S., Sanchez, S.N. and Dhaliwal, G.S. (2023) Alkali Ionic Conductivity in Inorganic Glassy Electrolytes. Journal of Materials Science and Chemical Engineering, 11, 31-72.
https://doi.org/10.4236/msce.2023.117004
[15]  Toby, B.H. and Von Dreele, R.B. (2013) GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. Journal of Applied Crystallography, 46, 544-549.
https://doi.org/10.1107/S0021889813003531
[16]  Toby, B.H. (2001) EXPGUI, A Graphical User Interface for GSAS. Journal of Applied Crystallography, 34, 210-213.
https://doi.org/10.1107/S0021889801002242

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413