全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炎症与氧化应激在急性肺损伤中的作用研究进展
Research Progress on the Role of Inflammation and Oxidative Stress in Acute Lung Injury

DOI: 10.12677/HJBM.2024.141005, PP. 48-55

Keywords: 急性肺损伤,急性呼吸窘迫综合征,炎症反应,氧化应激
Acute Lung Injury
, Acute Respiratory Distress Syndrome, Inflammatory Response, Oxidative Stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)一种以肺实质弥漫性炎症和顽固性低氧血症为特征的临床危重症疾病。尽管近几年国内外对ALI/ARDS进行深入研究,但由于其病因复杂、发病机制尚不明确,临床上亦无明确的可治愈药物,使得ALI/ARDS患者的总体生存质量和生存率均较低。近年来,大量文献报道炎症反应以及氧化应激与ALI/ARDS的发展密切相关,本文就炎症反应和氧化应激反应在ALI/ARDS发生发展中的作用进行综述,以期为ALI/ARDS的治疗和药物研发提供相关理论依据。
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a clinical critical disease characterized by diffuse inflammation of lung parenchyma and intractable hypoxemia. Although ALI/ARDS has been studied deeply in recent years, the overall quality of life and survival rate of ALI/ARDS patients are low due to its complex etiology, unclear pathogenesis and no clear clinical cure. In recent years, it has been reported that inflammation and oxidative stress are closely related to the development of ALI/ARDS. This paper reviews the role of inflammation and oxidative stress in the occurrence and development of ALI/ARDS, in order to provide relevant theoretical basis for developing drugs and treatment of ALI/ARDS.

References

[1]  Swenson, K.E. and Swenson, E.R. (2021) Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Critical Care Clinics, 37, 749-776.
https://doi.org/10.1016/j.ccc.2021.05.003
[2]  Long, M.E., Mallampalli, R.K. and Horowitz, J.C. (2022) Pathogenesis of Pneumonia and Acute Lung Injury. Clinical Science, 136, 747-769.
https://doi.org/10.1042/CS20210879
[3]  Ning, L., Shishi, Z., Bo, W. and Lin, H.Q. (2023) Targeting Immunometabolism against Acute Lung Injury. Clinical Immunology, 249, Article ID: 109289.
https://doi.org/10.1016/j.clim.2023.109289
[4]  Hu, Q., Zhang, S., Yang, Y., et al. (2022) Extracellular Vesicles in the Pathogenesis and Treatment of Acute Lung Injury. Military Medical Research, 9, Article No. 61.
https://doi.org/10.1186/s40779-022-00417-9
[5]  Mokra, D. (2020) Acute Lung Injury—From Pathophysiology to Treatment. Physiological Research, 69, S353-S66.
https://doi.org/10.33549/physiolres.934602
[6]  Kan, M. and Himes, B.E. (2021) Insights into Glucocorticoid Responses Derived from Omics Studies. Pharmacology & Therapeutics, 218, Article ID: 107674.
https://doi.org/10.1016/j.pharmthera.2020.107674
[7]  Prete, A. and Bancos, I. (2021) Glucocorticoid Induced Adrenal Insufficiency. BMJ, 374, n1380.
https://doi.org/10.1136/bmj.n1380
[8]  Arulselvan, P., Fard, M.T., Tan, W.S., et al. (2016) Role of Antioxidants and Natural Products in Inflammation. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 5276130.
https://doi.org/10.1155/2016/5276130
[9]  Chen, L., Deng, H., Cui, H., et al. (2018) Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget, 9, 7204-7218.
https://doi.org/10.18632/oncotarget.23208
[10]  Wang, P., Qiao, Q., Li, J., et al. (2016) Inhibitory Effects of Geraniin on LPS-Induced Inflammation via Regulating NF-κB and Nrf2 Pathways in RAW 264.7 Cells. Chemico-Biological Interactions, 253, 134-142.
https://doi.org/10.1016/j.cbi.2016.05.014
[11]  Turner, M.D., Nedjai, B., Hurst, T. and Pennington, D.J. (2014) Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1843, 2563-2582.
https://doi.org/10.1016/j.bbamcr.2014.05.014
[12]  Dinarello, C.A. (2011) Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood, 117, 3720-3732.
https://doi.org/10.1182/blood-2010-07-273417
[13]  Dechert, R.E., Haas, C.F. and Ostwani, W. (2012) Current Knowledge of Acute Lung Injury and Acute Respiratory Distress Syndrome. Critical Care Nursing Clinics of North America, 24, 377-401.
https://doi.org/10.1016/j.ccell.2012.06.006
[14]  Zhang, X., Zhang, Y., Qiao, W., et al. (2020) Baricitinib, a Drug with Potential Effect to Prevent SARS-COV-2 from Entering Target Cells and Control Cytokine Storm Induced by COVID-19. International Immunopharmacology, 86, Article ID: 106749.
https://doi.org/10.1016/j.intimp.2020.106749
[15]  Yeung, Y.T., Aziz, F., Guerrero-Castilla, A., et al. (2018) Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Current Pharmaceutical Design, 24, 1449-1484.
https://doi.org/10.2174/1381612824666180327165604
[16]  Wibisana, J.N. and Okada, M. (2022) Encoding and Decoding NF-κB Nuclear Dynamics. Current Opinion in Cell Biology, 77, Article ID: 102103.
https://doi.org/10.1016/j.ceb.2022.102103
[17]  Poma, P. (2020) NF-κB and Disease. International Journal of Molecular Sciences, 21, Article 9181.
https://doi.org/10.3390/ijms21239181
[18]  Yuan, S.N., Wang, M.X., Han, J.L., et al. (2023) Improved Colonic Inflammation by Nervonic Acid via Inhibition of NF-κB Signaling Pathway of DSS-Induced Colitis Mice. Phytomedicine, 112, Article ID: 154702.
https://doi.org/10.1016/j.phymed.2023.154702
[19]  Gomez-Chavez, F., Correa, D., Navarrete-Meneses, P., et al. (2021) NF-κB and Its Regulators during Pregnancy. Frontiers in Immunology, 12, Article 679106.
https://doi.org/10.3389/fimmu.2021.679106
[20]  Wang, B. and Shen, J. (2022) NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Frontiers in Immunology, 13, Article 895636.
https://doi.org/10.3389/fimmu.2022.895636
[21]  Didonato, J.A., Mercurio, F. and Karin, M. (2012) NF-κB and the Link between Inflammation and Cancer. Immunological Reviews, 246, 379-400.
https://doi.org/10.1111/j.1600-065X.2012.01099.x
[22]  Sun, S.C. (2011) Non-Canonical NF-κB Signaling Pathway. Cell Research, 21, 71-85.
https://doi.org/10.1038/cr.2010.177
[23]  Claudio, E., Brown, K., Park, S., et al. (2002) BAFF-Induced NEMO-Independent Processing of NF-κ B2 in Maturing B Cells. Nature Immunology, 3, 958-965.
https://doi.org/10.1038/ni842
[24]  Sun, S.C. (2017) The Non-Canonical NF-κB Pathway in Immunity and Inflammation. Nature Reviews Immunology, 17, 545-558.
https://doi.org/10.1038/nri.2017.52
[25]  刘建国. NF-κB信号通路在稀土氧化钕颗粒物致大鼠肺泡巨噬细胞(NR8383)分泌细胞因子过程中的作用研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学包头医学院, 2016.
[26]  Williams, A. and Scharf, S.M. (2007) Obstructive Sleep Apnea, Cardiovascular Disease, and Inflammation—Is NF-κB the Key? Sleep Breath, 11, 69-76.
https://doi.org/10.1007/s11325-007-0106-1
[27]  陈永生, 付斌, 郑永先. 金荞麦提取物对百草枯中毒大鼠急性肺损伤和MAPK/NF-κB信号通路的影响[J]. 遵义医科大学学报, 2022, 45(6): 736-742.
[28]  Park, H.B. and Baek, K.H. (2022) E3 Ligases and Deubiquitinating Enzymes Regulating the MAPK Signaling Pathway in Cancers. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1877, Article ID: 188736.
https://doi.org/10.1016/j.bbcan.2022.188736
[29]  Moon, H. and Ro, S.W. (2021) MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers, 13, Article 3026.
https://doi.org/10.3390/cancers13123026
[30]  Severin, S., Ghevaert, C. and Mazharian, A. (2010) The Mitogen-Activated Protein Kinase Signaling Pathways: Role in Megakaryocyte Differentiation. Journal of Thrombosis and Haemostasis, 8, 17-26.
https://doi.org/10.1111/j.1538-7836.2009.03658.x
[31]  Yang, R., Piperdi, S. and Gorlick, R. (2008) Activation of the RAF/Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase Pathway Mediates Apoptosis Induced by Chelerythrine in Osteosarcoma. Clinical Cancer Research, 14, 6396-6404.
https://doi.org/10.1158/1078-0432.CCR-07-5113
[32]  Li, T., Wu, Y.N., Wang, H., et al. (2020) Dapk1 Improves Inflammation, Oxidative Stress and Autophagy in LPS-Induced Acute Lung Injury via p38MAPK/NF-κB Signaling Pathway. Molecular Immunology, 120, 13-22.
https://doi.org/10.1016/j.molimm.2020.01.014
[33]  Lv, X., Yao, T., He, R., et al. (2021) Protective Effect of Fluorofenidone against Acute Lung Injury through Suppressing the MAPK/NF-κB Pathway. Frontiers in Pharmacology, 12, Article 772031.
https://doi.org/10.3389/fphar.2021.772031
[34]  Huang, B., Lang, X. and Li, X. (2022) The Role of IL-6/JAK2/STAT3 Signaling Pathway in Cancers. Frontiers in Oncology, 12, Article 1023177.
https://doi.org/10.3389/fonc.2022.1023177
[35]  Zhong, Y., Yin, B., Ye, Y., et al. (2021) The Bidirectional Role of the JAK2/STAT3 Signaling Pathway and Related Mechanisms in Cerebral Ischemia-Reperfusion Injury. Experimental Neurology, 341, Article ID: 113690.
https://doi.org/10.1016/j.expneurol.2021.113690
[36]  Rah, B., Rather, R.A., Bhat, G.R., et al. (2022) JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Frontiers in Pharmacology, 13, Article 821344.
https://doi.org/10.3389/fphar.2022.821344
[37]  Zheng, Q., Dong, H., Mo, J., et al. (2021) A Novel STAT3 Inhibitor W2014-S Regresses Human Non-Small Cell Lung Cancer Xenografts and Sensitizes EGFR-TKI Acquired Resistance. Theranostics, 11, 824-840.
https://doi.org/10.7150/thno.49600
[38]  Montero, P., Milara, J., Roger, I., et al. (2021) Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. International Journal of Molecular Sciences, 22, Article 6211.
https://doi.org/10.3390/ijms22126211
[39]  张丽敏, 祁亚锋, 韩冰阁, 等. 白细胞介素-6和JAK2/STAT3信号通路在急性肺损伤中的作用[J]. 中国急救医学, 2022, 42(5): 453-457.
[40]  石青青, 苏湘川, 杨小平, 等. 基于JAK2/STAT3信号通路探讨姜黄素改善脂多糖诱导的小鼠急性肺损伤的作用研究[J]. 中国中医急症, 2019, 28(5): 797-800.
[41]  王国全, 李莎, 余林中, 等. 基于JAK2/STAT3和IKKα/NF-κB信号通路探讨清瘟败毒饮对脓毒症急性肺损伤大鼠的保护作用及机制研究[J]. 中药药理与临床, 2018, 34(3): 2-5.
[42]  Nadeem, A., Al-Harbi, N.O., Ahmad, S.F., et al. (2018) Glucose-6-Phosphate Dehydrogenase Inhibition Attenuates Acute Lung Injury through Reduction in NADPH Oxidase-Derived Reactive Oxygen Species. Clinical and Experimental Immunology, 191, 279-287.
https://doi.org/10.1111/cei.13097
[43]  Zhou, J., Peng, Z. and Wang, J. (2021) Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation, 44, 1507-1517.
https://doi.org/10.1007/s10753-021-01435-w
[44]  Kelley, E.E., Khoo, N.K., Hundley, N.J., et al. (2010) Hydrogen Peroxide Is the Major Oxidant Product of Xanthine Oxidase. Free Radical Biology and Medicine, 48, 493-498.
https://doi.org/10.1016/j.freeradbiomed.2009.11.012
[45]  Gluschko, A., Herb, M., Wiegmann, K., et al. (2018) The β2 Integrin Mac-1 Induces Protective LC3-Associated Phagocytosis of Listeria monocytogenes. Cell Host Microbe, 23, 324-337.E5.
https://doi.org/10.1016/j.chom.2018.01.018
[46]  Mittler, R. (2017) ROS Are Good. Trends in Plant Science, 22, 11-19.
https://doi.org/10.1016/j.tplants.2016.08.002
[47]  Zemans, R.L. and Matthay, M.A. (2017) What Drives Neutrophils to the Alveoli in ARDS? Thorax, 72, 1-3.
https://doi.org/10.1136/thoraxjnl-2016-209170
[48]  Kellner, M., Noonepalle, S., Lu, Q., et al. (2017) ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Advances in Experimental Medicine and Biology, 967, 105-137.
https://doi.org/10.1007/978-3-319-63245-2_8
[49]  Lu, M.C., Zhao, J., Liu, Y.T., et al. (2019) CPUY192018, a Potent Inhibitor of the Keap1-Nrf2 Protein-Protein Interaction, Alleviates Renal Inflammation in Mice by Restricting Oxidative Stress and NF-κB Activation. Redox Biology, 26, Article ID: 101266.
https://doi.org/10.1016/j.redox.2019.101266
[50]  Liu, S., Pi, J. and Zhang, Q. (2022) Signal Amplification in the KEAP1-NRF2-ARE Antioxidant Response Pathway. Redox Biology, 54, Article ID: 102389.
https://doi.org/10.1016/j.redox.2022.102389
[51]  Luo, L., Huang, F., Zhong, S., et al. (2022) Astaxanthin Attenuates Ferroptosis via Keap1-Nrf2/HO-1 Signaling Pathways in LPS-Induced Acute Lung Injury. Life Sciences, 311, Article ID: 121091.
https://doi.org/10.1016/j.lfs.2022.121091
[52]  刘雅晶. CDDO-Im通过增强线粒体自噬抑制焦亡减轻脓毒症诱导的急性肺损伤[D]: [硕士学位论文]. 锦州: 锦州医科大学, 2022.
[53]  Zhang, L., Zhu, X.Z., Badamjav, R., et al. (2022) Isoorientin Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice via Modulating Keap1/Nrf2-HO-1 and NLRP3 Inflammasome Pathways. European Journal of Pharmacology, 917, Article ID: 174748.
https://doi.org/10.1016/j.ejphar.2022.174748

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413