全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压静电场对绿豆萌发和抗氧化生理影响的差异
Effects Comparison of the Germination and Antioxidant Physiology of Mung Bean Treated by High-Voltage Electrostatic Field

DOI: 10.12677/BR.2024.131004, PP. 28-38

Keywords: 高压静电场,绿豆,萌发特性,形态学指标,抗氧化生理
High-Voltage Electrostatic Field
, Mung Beans, Characteristics of Germination, Morphological Indicators, Antioxidant Physiology

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探明高压静电场对绿豆(Vigna radiata L.)种子萌发生长调控的有效性及其对抗氧化生理的影响,研究了不同方向和强度高压静电场对绿豆种子萌发特性及其抗氧化特性影响的差异性。结果表明,同一强度(3 kV/m)高压正静电场处理对2个绿豆品种的发芽率、简化活力指数、芽长和根长都有明显的促进作用,相同强度的高压负静电场对2个绿豆品种的简化活力指数和芽长的生物学效应相反。不同方向高压静电场处理对2个绿豆品种鲜重的影响不明显。抗氧化生理研究显示,2个绿豆品种的SOD活性和\"\"含量出现峰值时的高压正静电场处理强度相同,小于12 kV/m高压正静电场处理可以诱导\"\"激活2个绿豆品种的SOD活性。2个绿豆品种萌发时的抗坏血酸含量(ASA)对不同强度高压正静电场处理表现不敏感,其萌发过程中H2O2的清除可能主要由CAT调控,而与APX无关。研究探讨了不同方向和强度高压静电场对绿豆种子萌发和抗氧化生理影响差异的原因。
To clarify the effectiveness of high-voltage electrostatic field in regulating seed germination and growth, as well as their impact on antioxidant physiology, two mung beans cultivars (Vigna radiata L.) were used to compare the differences in germination characteristics and antioxidant properties. The results showed that the high-voltage positive electrostatic field at the same intensity (3 kV/m) significantly promoted the germination rate, simplified vigor index, shoot length and root length of the germinating seeds of two mung beans cultivars. However, the high-voltage negative electrostatic field with the same intensity had opposite effects on the simplified vigor index and shoot length. The influence of high-voltage electrostatic field with different directions on the fresh weight of the two mung beans was not significant. The antioxidant physiological study found that the SOD activity and \"\" content of the two mung bean varieties reached their peak under the same intensity of high-voltage positive electrostatic field. Additionally, the SOD activity of the two mung bean varie-ties could be stimulated by \"\" when the intensity of high-voltage positive electrostatic field was below12 kV/m. The contents of ascorbic acid (ASA) in the two mung bean cultivars were not sensi-tive to the high-voltage positive electrostatic fields with different intensities. The scavenging of H2O2 is mainly regulated by CAT, and is unrelated to APX during seed germination. The study discussed the reasons for the differences in the effects of high-voltage static electric fields with different direc-tions and intensities on mung bean seed germination and antioxidant physiology.

References

[1]  毛家旺, 杨艳华, 陈克平, 等. 植物激素与microRNA调控种子大小和发育的分子机制研究进展[J]. 植物生理学报, 2021, 57(2): 274-292.
[2]  张钰钦, 杨之帆, 李越, 等. 外源海藻糖浸种对低温胁迫油菜种子萌发及幼苗生长的影响[J]. 中国油料作物学报, 2022, 44(2): 376-384.
[3]  朱泯亦, 曹栋栋, 王利, 等. 赶粉后不同时期喷施外源激素对杂交水稻II优7954种子活力和产量的影响[J]. 浙江农业科学, 2020, 61(3): 492-497.
[4]  魏晓梅, 吴丽芳, 张龄丹, 等. 植物生长调节剂对玉米及水稻种子活力的影响[J]. 作物研究, 2017, 31(6): 653-658.
[5]  张秀玲. 不同盐分胁迫对野生大豆种子发芽的影响[J]. 大豆科学, 2009, 28(3): 461-466.
[6]  黄洪云, 鲍秀珍, 韩哲. 高压静电场对番茄种子萌发和幼苗生长的影响[J]. 种子, 2019, 38(1): 104-106.
[7]  武翠卿, 武新慧, 崔清亮, 等. 高压脉冲电场对高粱种子萌发特性影响研究[J]. 农机化研究, 2021, 43(1): 138-145.
[8]  李雪梅, 刘兴发, 张建功, 等. 高压静电场胁迫对苦瓜生理代谢及主要害虫与天敌种群的影响[J]. 应用昆虫学报, 2021, 58(1): 66-73.
[9]  白亚乡, 胡玉才. 高压静电场对农作物种子生物学效应原发机制的探讨[J]. 农业工程学报, 2003, 19(2): 49-51.
[10]  习岗, 刘锴, 徐永奎, 等. 极低频脉冲电场与高压静电场对作物种子萌发影响的差异[J]. 农业工程学报, 2013, 29(1): 265-271.
[11]  Dan, Z., Lü, H., Chu, S., et al. (2017) The Genetic Architecture of Water-Soluble Protein Content and Its Genetic Relationship to Total Protein Content in Soybean. Scientific Reports, 7, Article No. 5053.
https://doi.org/10.1038/s41598-017-04685-7
[12]  Li, Z.W., Wang, F.B., Lei, B.T., et al. (2014) Genotyp-ic-Dependent Alteration in Transcriptional Expression of Various Cat Isoenzyme Genes in esl Mutant Rice and Its Rela-tion to H2O2-Induced Leaf Senescence. Plant Growth Regulation, 73, 237-248.
https://doi.org/10.1007/s10725-013-9884-6
[13]  Hui, Z., Tian, F.X., Wang, G.K., et al. (2012) The Antioxidative Defense System Is Involved in the Delayed Senescence in a Wheat Mutant tasg1. Plant Cell Reports, 31, 1073-1084.
https://doi.org/10.1007/s00299-012-1226-z
[14]  Li, Z., Su, D., Lei, B., et al. (2015) Transcriptional Profile of Genes Involved in Ascorbate Glutathione Cycle in Senescing Leaves for an Early Senescence Leaf (esl) Rice Mutant. Journal of Plant Physiology, 176, 1-15.
https://doi.org/10.1016/j.jplph.2014.09.020
[15]  Cakmak, I. and Marschner, H. (1992) Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves. Plant Physiology, 98, 1222-1227.
https://doi.org/10.1104/pp.98.4.1222
[16]  Scebba, F., Sebastiani, L. and Vitagliano, C. (2001) Activities of Anti-oxidant Enzymes during Senescence of Prunus armeniaca Leaves. Biologia Plantarum, 44, 41-46.
https://doi.org/10.1023/A:1017962102950
[17]  Su, L.Q., Lan, Q., Pritchard, H.W., et al. (2016) Reactive Oxygen Species Induced by Cold Stratification Promote Germination of Hedysarum scoparium Seeds. Plant Physiology and Bi-ochemistry, 109, 406-415.
https://doi.org/10.1016/j.plaphy.2016.10.025
[18]  Li, W., Chen, B., Chen, Z., et al. (2017) Reactive Oxygen Spe-cies Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. International Journal of Molecular Sciences, 18, Article No. 110.
https://doi.org/10.3390/ijms18010110
[19]  Biju, S., Fuentes, S. and Gupta, D. (2017) Silicon Improves Seed Germination and Alleviates Drought Stress in Lentil Crops by Regulating Osmolytes, Hydrolytic Enzymes and Antioxidant Defense System. Plant Physiology Biochemistry, 119, 250-264.
https://doi.org/10.1016/j.plaphy.2017.09.001
[20]  包斯琴高娃, 马占新, 杨体强. 电场对作物种子影响有效性的综合评价方法[J]. 农业工程学报, 2008, 24(3): 25-30.
[21]  李美清, 吴沿友, 李青林. 高压静电场对水培番茄生理指标与产量的影响[J]. 农业机械学报, 2015, 46(11): 145-150.
[22]  李亚娇, 郭九峰, 王淑研, 等. 负高压静电场对甘草种子萌发的影响[J]. 种子, 2015, 34(11): 19-22.
[23]  王清元, 卢贵忠, 赵玉清. 高压静电场对水稻种子萌发的试验研究[J]. 云南农业大学学报, 2005, 20(1): 147-150.
[24]  甘平, 胡国虎, 陈宏. 高压静电场影响小白鼠体重增长的研究[J]. 生物物理学报, 1997, 13(4): 705-707.
[25]  Diaz-Vivancos, P., Barba-Espín, G. and Hernández, J.A. (2013) Elucidating Hormonal/ROS Networks during Seed Germination: Insights and Perspectives. Plant Cell Reports, 32, 1491-1502.
https://doi.org/10.1007/s00299-013-1473-7
[26]  Luo, X., Dai, Y., Zheng, C., et al. (2020) The ABI4-RbohD/VTC2 Regulatory Module Promotes Reactive Oxygen Species (ROS) Accumulation to Decrease Seed Germination under Salinity Stress. New Phytologist, 229, 950-962.
https://doi.org/10.1111/nph.16921
[27]  Zhou, L., Ye, Y., Zhao, Q., et al. (2018) Suppression of ROS Generation Mediated by Higher InsP3 Level Is Critical for the Delay of Seed Germination in lpa Rice. Plant Growth Regulation, 85, 411-424.
https://doi.org/10.1007/s10725-018-0402-8
[28]  Wang, G., Huang, J., Gao, W., et al. (2009) The Effect of High-Voltage Electrostatic Field (HVEF) on Aged Rice (Oryza sativa L.) Seeds Vigor and Lipid Peroxidation of Seed-lings. Journal of Electrostatics, 67, 759-764.
https://doi.org/10.1016/j.elstat.2009.05.004
[29]  朱诚, 房正浓, 曾广文. 高压静电场处理对老化黄瓜种子脂质过氧化的影响[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 127-130.
[30]  Mhamdi, A., Queval, G., Chaouch, S., et al. (2010) Catalase Function in Plants: A Focus on Arabidopsis Mutants as Stress-Mimic Models. Jour-nal of Experimental Botany, 61, 4197-4220.
https://doi.org/10.1093/jxb/erq282

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413