全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NCM622三元动力电池热失控蔓延抑制的实验与建模研究
Experimental and Modeling Study on Thermal Runaway Propagation Inhibition in NCM622 Ternary Lithium-Ion Batteries

DOI: 10.12677/MOS.2024.131044, PP. 460-467

Keywords: 锂电池,电池系统,热失控扩散抑制,热失控喷发气
Lithium Battery
, Battery Systems, Thermal Runaway Diffusion Inhibition, Thermal Runaway Eruption Gas

Full-Text   Cite this paper   Add to My Lib

Abstract:

当动力电池系统内某一节电池在遭到热滥用或机械滥用的条件下,可能发生热失控,瞬间在电池系统内释放大量热量,导致多节电池发生多米诺骨牌式的热失控。同时,热失控释放的高温气体在电池系统内聚集会有潜在爆燃的风险。气凝胶因其隔热性能良好、成本低、结构稳定等优点,是作为阻隔热失控扩散的理想材料。本研究对大容量方壳三元锂电池展开了从单体、模组实验与建模研究,通过实验验证了同时使用气凝胶在抑制电池系统热失控蔓延方面的有效性。结果表明,引入气凝胶可以明显地降低电池组的温度上升,使热量被限制在局部区域内,防止热失控传播到相邻的电池单元。电池系统内部发生部分电池热失控后,喷发的高温气体需要快速疏导排出系统内以降低热灾害。最后建立电池系统内部热失控高温气体喷发流动3D模型。该模型模拟了两节电池依次热失控后高温气体在系统内的流动情况,为后续的电池系统安全结构设计提供思路。
In a power battery system, under conditions of thermal or mechanical abuse, a single cell may ex-perience thermal runaway, releasing a substantial amount of heat within the battery system in-stantly. This can lead to a domino effect of thermal runaway across multiple cells. Simultaneously, the high-temperature gases released during thermal runaway pose a potential risk of combustion within the battery system. Aerogels, due to their excellent thermal insulation, low cost, and struc-tural stability, are considered an ideal material for inhibiting the spread of thermal runaway. This study focuses on large-capacity ternary lithium-ion batteries, conducting experiments and model-ing at the individual cell and module level. Experimental validation confirms the effectiveness of using aerogels to suppress the propagation of thermal runaway in the battery system. The results indicate that introducing aerogels significantly reduces the temperature rise of the battery pack, confining the heat to a localized area and preventing the spread of thermal runaway to adjacent battery units. In the event of partial thermal runaway within the battery system, rapid venting of the high-temperature gases is necessary to mitigate thermal hazards. Finally, a 3D model depicting the flow of high-temperature gases expelled during thermal runaway within the battery system is developed. This model simulates the flow of high-temperature gases after sequential thermal run-away events in two cells, offering insights for the design of safety structures in future battery sys-tems.

References

[1]  Wang, X., Wei, X., Zhu, J., et al. (2021) A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Imped-ance for Onboard Battery Management. eTransportation, 7, Article ID: 100093.
https://doi.org/10.1016/j.etran.2020.100093
[2]  Cai, T., Valecha, P., Tran, V., et al. (2021) Detection of Li-Ion Battery Failure and Venting with Carbon Dioxide Sensors. eTransportation, 7, Article ID: 100100.
https://doi.org/10.1016/j.etran.2020.100100
[3]  Feng, X., Ren, D., He, X. and Ouyang, M.G. (2020) Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 4, 743-770.
https://doi.org/10.1016/j.joule.2020.02.010
[4]  Wang, G., Gao, W., He, X., et al. (2024) Numerical Investigation on Thermal Runaway Propagation and Prevention in Cell-to-Chassis Lithium-Ion Battery System. Applied Thermal Engineering, 236, Article ID: 121528.
https://doi.org/10.1016/j.applthermaleng.2023.121528
[5]  Wang, H., Wang, Q., Zhao, Z., et al. (2023) Thermal Runaway Propagation Behavior of the Cell-To-Pack Battery System. Journal of Energy Chemistry, 84, 162-172.
https://doi.org/10.2139/ssrn.4336582
[6]  Sun, H., Zhang, L., Duan, Q., et al. (2022) Experimental Study on Suppressing Thermal Runaway Propagation of Lithium-Ion Batteries in Confined Space by Various Fire Extinguishing Agents. Process Safety and Environmental Protection, 167, 299-307.
https://doi.org/10.1016/j.psep.2022.09.016
[7]  Kong, D., Wang, G., Ping, P. and Wen, J. (2022) A Coupled Conjugate Heat Transfer and CFD Model for the Thermal Runaway Evolution and Jet Fire of 18650 Lithium-Ion Battery under Thermal Abuse. eTransportation, 12, Article ID: 100157.
https://doi.org/10.1016/j.etran.2022.100157
[8]  Zhang, L., Liu, L., Yang, S., et al. (2023) Experimental Investigation on Thermal Runaway Suspension with Battery Health Retention. Applied Thermal Engineering, 225, Article ID: 120239.
https://doi.org/10.1016/j.applthermaleng.2023.120239
[9]  Wang, Z., He, T., Bian, H., et al. (2021) Characteristics of and Factors Influencing Thermal Runaway Propagation in Lithium-Ion Battery Packs. Journal of Energy Storage, 41, Article ID: 102956.
https://doi.org/10.1016/j.est.2021.102956
[10]  Zhang, Q., Niu, J., Yang, J., et al. (2022) In-Situ Explosion Limit Analysis and Hazards Research of Vent Gas from Lithium-Ion Battery Thermal Runaway. Journal of Energy Storage, 56, Article ID: 106146.
https://doi.org/10.1016/j.est.2022.106146
[11]  Liu, Y., Niu, H., Liu, J. and Huang, X.Y. (2022) Layer-to-Layer Thermal Runaway Propagation of Open-Circuit Cylindrical Li-Ion Batteries: Effect of Ambient Pressure. Journal of Energy Storage, 55, Article ID: 105709.
https://doi.org/10.1016/j.est.2022.105709
[12]  Lin, S., Ling, Z., Li, S., et al. (2023) Mitigation of Lithium-Ion Battery Thermal Runaway and Inhibition of Thermal Runaway Propagation Using Inorganic Salt Hydrate with Integrated Latent Heat and Thermochemical Storage. Energy, 266, Article ID: 126481.
https://doi.org/10.1016/j.energy.2022.126481
[13]  Zhang, L., Duan, Q., Meng, X., et al. (2022) Experimental Investigation on Intermittent Spray Cooling and Toxic Hazards of Lithi-um-Ion Battery Thermal Runaway. Energy Conversion and Management, 252, Article ID: 115091.
https://doi.org/10.1016/j.enconman.2021.115091
[14]  Tang, J., Wu, X., Ren, J., et al. (2023) Suppressing Thermal Run-away Propagation of NICKEL-RICH LITHIUM-ION Battery Modules Using Silica Aerogel Sheets. Process Safety and Envi-ronmental Protection, 179, 199-207.
https://doi.org/10.1016/j.psep.2023.08.100

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413