全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AQPs和碳代谢表达与木质部栓塞修复的关系
Relationship between Carbon Metabolism and Aqps Expression and Xylem Embolization Repair

DOI: 10.12677/BR.2024.131010, PP. 86-92

Keywords: 栓塞修复,AQPS,碳代谢,栓塞
Embolization Repair
, AQPS, Carbon Metabolism, Embolism

Full-Text   Cite this paper   Add to My Lib

Abstract:

木质部的管道分子是植物生长发育是植物运输水分的主要通道,干旱发生以后会使植物木质部形成栓塞和空穴,进一步阻碍或者阻断水分子的运输,使植物失水死亡。木质部导管的栓塞和修复是植物在张力下处理水分运输的内在能力。虽然木质部栓塞的形成是一个非生物过程,但在压力梯度下重新填充需要生物活性来提供能量和水,以恢复木质部运输能力。导管“新的再充水”是人们认同的栓塞修复机制,但它是一个需要能量代谢和精细协调的生理学过程,涉及木质部溶质和水分的运输。水通道蛋白AQPs是一种在细胞膜上面的蛋白,它能控制着水分的进出,进而调节植物体内水分的平衡。非结构性碳水化合物具有能量代谢和渗透调节等功能,并且为防御化合物的合成或与参与营养获取或防御的共生体进行交换提供底物。近年来,随着对于木质部栓塞恢复的研究成为植物耐旱性研究的热点,关于水通道蛋白和碳代谢与栓塞修复关系的研究很多。据此,本文结合近年来的研究对木质部栓塞修复与水通道蛋白和非结构性碳之间的关系进行简单的阐述。
Fast and efficient recovery from water stress is a key determinant of plant adaptation to changing. The main channels of water transport in plants are xylem conduit molecules (ducts or tracheids), which can be obstructed or blocked by embolization and cavitation in xylem under drought stress. Embolization and filling of xylem vessels is the inherent ability of plants to handle water transport under tension. Although the formation of xylem embolism is an abiotic process, refilling at a pres-sure gradient requires biological activity to provide energy and water to restore xylem transport capacity. The embolization of the catheteris a physiological process requiring energy metabolism and fine coordination, involving starch hydrolysis, solute and water transport. Aquaporins (AQPS) are proteins on the cell membrane that control the flow of water in and out of plants, thus regulat-ing the water balance in plants. In recent years, the study of xylem embolism recovery has become a hot topic in the study of drought tolerance of plants, and there are many studies on the relationship between aquaporin and carbon metabolism and embolism repair. Therefore, the relationship be-tween xylem embolization repair and aquaporin and non-structural carbon was briefly described in this paper.

References

[1]  何春霞, 李吉跃, 郭明. 树木树液上升机理研究进展[J]. 生态学报, 2007(1): 329-337.
[2]  于界芬. 树木蒸腾耗水特点及解剖结构的研究[D]: [硕士学位论文]. 南京: 南京林业大学, 2003.
[3]  申卫军. 木本植物木质部空穴和栓塞化研究[J]. 热带亚热带植物学报, 1999(3): 257-266.
[4]  Tyree, M.T. and Sperry, J.S. (1989) Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
https://doi.org/10.1146/annurev.pp.40.060189.000315
[5]  Tyree, M.T. and Zimmermann, M.H. (2002) Xylem Structure and the Ascent of Sap. 2nd Edition, Springer Verlag, New York, 127.
https://doi.org/10.1007/978-3-662-04931-0
[6]  Sperry, J.S., Donnelly, J.R. and Tyree, M.T. (1988) A Method for Measuring Hydraulic Conductivity and Embolism in Xylem. Plant, Cell & Environment, 11, 35-45.
https://doi.org/10.1111/j.1365-3040.1988.tb01774.x
[7]  Salleo, S., Gullo, M.A.L., Paoli, D.D. and Zippo, M. (1996) Xylem Recovery from Cavitation-Induced Embolism in Young Plants of Laurus nobilis, a Possible Mechanism. New Phytologist, 132, 47-56.
https://doi.org/10.1111/j.1469-8137.1996.tb04507.x
[8]  Salleo, S., Trifilco, P., Esposito, S., Nardini, A. and Lo Gullo, M.A. (2009) Starch-to-Sugar Conversion in Wood Parenchyma of Field-Growing Laurus nobilis Plants: A Component of the Signal Pathway for Embolism Repair? Functional Plant Biology, 36, 815-825.
https://doi.org/10.1071/FP09103
[9]  Kammerloher, W., Fischer, U., Piechottka, G.P. and Sch?ffner, A.R. (1994) Water Channels in the Plant Plasma Membrane Cloned by Immunoselection from a Mammalian Expression System. Plant Journal, 6, 187-199.
https://doi.org/10.1046/j.1365-313X.1994.6020187.x
[10]  于秋菊, 吴锜, 林忠平, 李景富. 植物水孔蛋白研究进展[J]. 北京大学学报(自然科学版), 2002(6): 855-866.
[11]  刘迪秋, 王继磊, 葛锋, 李文娴. 植物水通道蛋白生理功能的研究进展[J]. 生物学杂志, 2009(5): 63-66.
[12]  Javot, H. and Maurel, C. (2001) The Role of Aquaporins in Root Water Uptake. Annals of Botany, 90, 1-13.
https://doi.org/10.1093/aob/mcf199
[13]  Wan, X., Landh?usser, S.M., Zwiazek, J.J., et al. (2004) Stomatal Con-ductance and Xylem Sapproperties of Aspen (Populus tremuloides) in Response to Low Soil Temperature. Physiologia Plantarum, 122, 79-85.
https://doi.org/10.1111/j.1399-3054.2004.00385.x
[14]  Siefritz, F., Tyree, M.T., Lovisolo, C., et al. (2002) PIP1 Plasma Membrane Aquaporins in Tobacco: From Cellular Effects to Function in Plants. The Plant Cell, 14, 869-876.
https://doi.org/10.1105/tpc.000901
[15]  Martre, P., Morillon, R. and Barrieu, F. (2002) Plasma Membrane Aqua-porins Play a Significant Role during Recovery from Water Deficit. Plant Physiology, 130, 2101-2110.
https://doi.org/10.1104/pp.009019
[16]  Mahdieh, M., Mostajeran, A. and Horie, T. (2008) Drought Stress Alters Water Relations and Expression of PIP-Typeaquaporin Genes in Nicotiana tabacum Plants. Plant and Cell Physiology, 49, 801-813.
https://doi.org/10.1093/pcp/pcn054
[17]  Secchi, F. and Zwieniecki, M.A. (2010) Patterns of PIP Gene Expression in Populus trichocarpa during Recovery from Xylem Embolism Suggest a Major Role for the PIP1 Aquaporin Subfam-ily as Moderators of Refilling Process. Plant, Cell & Environment, 33, 1285-1297.
https://doi.org/10.1111/j.1365-3040.2010.02147.x
[18]  Lee, S. and Kim, Y. (2008) In Vivo Visualization of the Water-Refilling Process in Xylem Vessels Using X-Ray Micro-Imaging. Annals of Botany, 101, 595-602.
https://doi.org/10.1093/aob/mcm312
[19]  Yamada, S., Komori, T., Myers, P.N., et al. (1997) Expression of Plasma Membrane Water Channel Genes under Water Stress in Nicotiana Excelsior. Plant and Cell Physiology, 38, 1226-1231.
https://doi.org/10.1093/oxfordjournals.pcp.a029109
[20]  Jang, J.K., Kim, D.G., Kim, Y.O., et al. (2004) An Ex-pression Analysis of a Gene Family Encoding Plasma Membrane Aquaporins in Response to Abiotic Stresses in Ara-bidopsis thaliana. Plant Molecular Biology, 54, 713-725.
https://doi.org/10.1023/B:PLAN.0000040900.61345.a6
[21]  Hüve, K., Bichele, I., Ivanova, H., Keerberg, O., Par-nik, T., Rasulov, B., Tobias, M. and Niinemets, ü. (2012) Temperature Responses of Dark Respiration in Relation to Leaf Sugar Concentration. Physiologia Plantarum, 144, 320-334.
https://doi.org/10.1111/j.1399-3054.2011.01562.x
[22]  Hartmann, H. and Trumbore, S. (2016) Understanding the Roles of Nonstructural Carbohydrates in Forest Trees—From What We Can Measure to What We Want to Know. New Phytologist, 211, 386-403.
https://doi.org/10.1111/nph.13955
[23]  Macneill, G.J., Mehrpouyan, S., Minow, M.A., Patterson, J.A., Tetlow, I.J. and Emes, M.J. (2017) Starch as a Source, Starch as a Sink: The Bifunctional Role of Starch in Carbon Allocation. Journal of Experimental Botany, 68, 4433-4453.
https://doi.org/10.1093/jxb/erx291
[24]  吴楚, 何开平. 植物水孔蛋白的生理功能及其基因表达调控的研究进展[J]. 湖北农学院学报, 2001(4): 376-381.
[25]  Liu, M., Korpelainen, H. and Li, C.Y. (2021) Sexual Differences and Sex Ratios of Dioecious Plants under Stressful Environments. Journal of Plant Ecology, 14, 920-933.
https://doi.org/10.1093/jpe/rtab038
[26]  Brodersen, C.R., McElrone, A.J., Choat, B. and Matthews, M.A. (2010) The Dynamics of Embolism Repair in Xylem: In Vivo Visualizations Using High-Resolution Computed Tomography. Plant Physiology, 154, 1088-1095.
https://doi.org/10.1104/pp.110.162396
[27]  López-Pérez, L., Martínez-Ballesta, M.C. and Maurel, C. (2009) Changes in Plasma Membrane Lipids, Aquaporins and Proton Pump of Broccoli Roots, as an Adaptation Mechanism to Salinity. Phytochemistry, 70, 492-500.
https://doi.org/10.1016/j.phytochem.2009.01.014
[28]  Illarionova, N.B., Gunnarson, E., Li, Y., et al. (2010) Func-tional and Molecular Interactions between Aquaporins and Na, K-ATPase. Neuroscience, 168, 915-925.
https://doi.org/10.1016/j.neuroscience.2009.11.062
[29]  Sakr, S., Alves, G. and Morillon, R. (2003) Plasma Mem-brane Aquaporins Are Involved in Winter Embolism Recovery in Walnut Tree. Plant Physiology, 133, 630-641.
https://doi.org/10.1104/pp.103.027797
[30]  冷华妮. 植物栓塞修复机制与质膜内在水通道蛋白基因的克隆、表达和转基因研究[D]: [博士学位论文]. 北京: 中国林业科学研究院, 2012.
[31]  Améglio, T., Ewers, F.W., Co-chard, H., Martignac, M., et al. (2001) Winter Stem Xylem Pressure in Walnut Trees: Effects of Carbohydrates, Cooling and Freezing. Tree Physiology, 21, 387-394.
https://doi.org/10.1093/treephys/21.6.387
[32]  Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C. and Stern-berg, L.D.S.L. (2003) Dynamic Changes in Hydraulic Conductivity in Petioles of Two Savanna Tree Species: Factors and Mechanisms Contributing to the Refilling of Embolized Vessels. Plant Cell and Environment, 26, 1633-1645.
https://doi.org/10.1046/j.0140-7791.2003.01082.x
[33]  Nardini, A., Lo Gullo, M.A. and Selleo, S. (2011) Refilling Embolized Xylem Conduits, Is It a Matter of Phloem Unloading? Plant Science, 180, 604-611.
https://doi.org/10.1016/j.plantsci.2010.12.011
[34]  Perrone, I., Pagliarani, C., Lovisolo, C., Chitarra, W., Roman, F. and Schubert, A. (2012) Recovery from Water Stress Affects Grape Leaf Petiole Transcriptome. Planta, 235, 1383-1396.
https://doi.org/10.1007/s00425-011-1581-y
[35]  Brodersen, C.R. and Mc Elrone, A.J. (2013) Maintenance of Xy-lem Network Transport Capacity: Are View of Embolism Repair in Vascular Plants. Frontiers in Plant Science, 4, 63-64.
https://doi.org/10.3389/fpls.2013.00108

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413