全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LSTM模型的电厂传感器点位预测
Prediction of Power Plant Sensor Point Based on LSTM Model

DOI: 10.12677/MOS.2024.131049, PP. 506-513

Keywords: 时间序列,传感器点位数值,LSTM模型,短期预测
Time Series
, Sensor Point Value, LSTM Model, Short-Term Prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着大数据的发展,国内众多电厂也开始智能化改进。传感器点位的实时数值是反应发电机组当前健康状况的重要指标,具有较强的跟踪意义,研究并预测短时间内传感器点位的实时数值变化有助于电厂监盘人员了解发电机组当前的健康状况,能够提前应对意外情况。通过对传感器点位数值的时间序列数据建模分析,使用LSTM模型,对后续的几次传感器点位数值进行短期预测,取得了较好的拟合预测结果,充分说明时间序列模型应用在传感器点位数值的短期预测的可行性。随着电厂智能化的深入,传感器点位预测还应进一步提高准确度,帮助电厂监盘人员更好地应对发电机组异常状况。
With the development of big data, many power plants in China have also begun to improve their in-telligence. The real-time value of sensor points is an important indicator reflecting the current health status of the generator set, which has strong tracking significance. Studying and predicting the real-time value changes of sensor points in a short period of time can help power plant moni-toring personnel understand the current health status of the generator set and respond to unex-pected situations in advance. By modeling and analyzing the time series data of sensor point values, the LSTM model was used to make short-term predictions for subsequent sensor point values, and good fitting prediction results were obtained, fully demonstrating the feasibility of applying the time series model to short-term prediction of sensor point values. With the deepening of intelli-gence in power plants, the accuracy of sensor point prediction should be further improved to help power plant monitoring personnel better cope with abnormal conditions of generator units.

References

[1]  Fordal, J.M., Schj?lberg, P., Helgetun, H., et al. (2023) Application of Sensor Data Based Predictive Maintenance and Artificial Neural Networks to Enable Industry 4.0. Advances in Manufacturing, 11, 248-263.
https://doi.org/10.1007/s40436-022-00433-x
[2]  Box, G.E.P., Jenkins, G.M., Reinsel, G.C., et al. (2015) Time Series Analysis: Forecasting and Control. John Wiley & Sons, New York.
[3]  Zhang, F., Deb, C., Lee, S.E., et al. (2016) Time Se-ries Forecasting for Building Energy Consumption Using Weighted Support Vector Regression with Differential Evolution Op-timization Technique. Energy and Buildings, 126, 94-103.
https://doi.org/10.1016/j.enbuild.2016.05.028
[4]  Wong, F.S. (1991) Time Series Forecasting Using Backpropagation Neural Networks. Neurocomputing, 2, 147-159.
https://doi.org/10.1016/0925-2312(91)90045-D
[5]  Wang, L., Zeng, Y.I. and Chen, T. (2015) Back Propagation Neural Network with Adaptive Differential Evolution Algorithm for Time Series Forecasting. Expert Systems with Applications, 42, 855-863.
https://doi.org/10.1016/j.eswa.2014.08.018
[6]  Connor, J. and Atlas, L. (1991) Recurrent Neural Networks and Time Se-ries Prediction. IUJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, 08-12 July 1991, 301-306.
https://doi.org/10.1109/IJCNN.1991.155194
[7]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[8]  杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(3): 65-77.
https://doi.org/10.19343/j.cnki.11-1302/c.2019.03.006
[9]  陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术, 2017, 15(5): 8-11.
https://doi.org/10.16543/j.2095-641x.electric.power.ict.2017.05.002
[10]  季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42.
https://doi.org/10.19721/j.cnki.1001-7372.2019.06.003
[11]  Greff, K., Srivastava, R.K., Koutnik, J., et al. (2016) LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks & Learning Systems, 28, 2222-2232.
https://doi.org/10.1109/TNNLS.2016.2582924
[12]  Kingma, D.P. and Ba, J. (2015) Adam: A Method for Stochastic Op-timization. Computer Science.
https://doi.org/10.48550/arXiv.1412.6980

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413