全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类病毒群体免疫最小免疫人口推断及检验
A Class of Virus Population Immunity Minimum Immune Population Inference and Testing

DOI: 10.12677/AAM.2024.131031, PP. 285-292

Keywords: 群体免疫屏障,SIR模型,基本再生数,免疫人口比率
Herd Immunity Barrier
, SIR Model, Basic Reproduction Number, Immunization Population Ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过微分动力系统研究新冠病毒群体免疫屏障所需的最小免疫人口比率,并探究免疫人口比率对疫情爆发的影响。采用参数时变的SIR模型,通过一阶差分得到感染率和移出率的表达式,并对其进行曲线拟合。利用下一代矩阵法推导基本再生数的表达式,借助建立群体免疫屏障的临界基本再生数,确定新冠病毒群体免疫屏障所需的最小免疫人口比率。经过数值计算表明,即使随机感染率服从以原始最大感染率为均值,以0.1倍的原始最大感染率为标准差的正态分布,只要免疫人口比率不低于72.03%,人群依然能够建立起群体免疫屏障,有效控制新冠病毒的传播。这项研究的方法和结果也可以为控制其它动植物病毒提供有益的指导。
This study investigates the minimum immune population ratio required for achieving herd im-munity against the novel coronavirus and explores the impact of the immune population ratio on the outbreak of the epidemic using a differential dynamical system. The time-varying SIR model is employed, and the expressions for the infection rate and removal rate are obtained through first-order differencing and curve fitting. The expression for the basic reproduction number is de-rived using the next-generation matrix method. By establishing the critical basic reproduction number for achieving herd immunity, the minimum immune population ratio required for the nov-el coronavirus is determined. Numerical calculations demonstrate that even under the condition where the stochastic infection rate follows a normal distribution with the original maximum infec-tion rate as the mean and 0.1 times the original maximum infection rate as the variance, as long as the immune population ratio is not lower than 72.03%, the population can still establish herd im-munity and effectively control the transmission of the novel coronavirus. The methods and results of this study can provide valuable guidance for controlling other animal and plant viruses.

References

[1]  World Health Organization (2022) WHO Coronavirus (COVID-19) Dash/Board.
https://data.who.int/dashboards/covid19/data
[2]  Bhadra, S., et al. (2021) Herd Immunity: An End to the Global COVID 19 Pandemic Crises. International Research in Medical and Health Sciences, 4, 12-29.
[3]  胡家林. 接种新冠病毒疫苗共筑健康免疫屏障[J]. 当代贵州, 2021(30): 34-35.
[4]  吴丹, 郑徽, 李艺星, 等. 群体免疫及其对传染病防控的意义[J]. 中国疫苗和免疫, 2020, 26(4): 479-483.
[5]  王佳亮, 李海滨, 李海燕. 基于复杂网络的新冠病毒群体免疫数值仿真[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
[6]  叶红霞, 刘应辉, 吴凌逸. 基于SEIR模型对接种新冠病毒疫苗的预测与控制[J]. 哈尔滨师范大学自然科学学报, 2022, 38(2): 30-36.
[7]  陈胤忠, 姜仁杰, 俞文祥, 等. 建立群体免疫屏障控制甲型肝炎流行的效果研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
[8]  Pell, B., Johnston, M.D. and Nelson, P. (2022) A Data-Validated Temporary Immunity Model of COVID-19 Spread in Michigan. Mathematical Biosciences and Engineering, 19, 10122-10142.
https://doi.org/10.3934/mbe.2022474
[9]  Wallinga, J. and Lipsitch, M. (2007) How Generation Intervals Shape the Relationship between Growth Rates and Reproductive Numbers. Proceedings of the Royal Society B: Biological Sciences, 274.
https://doi.org/10.1098/rspb.2006.3754
[10]  崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[11]  van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[12]  中华人民共和国国家卫生健康委员会. 疫情通报[EB/OL]. http://www.nhc.gov.cn/xcs/yqtb/list_gzbd_41.shtml, 2020-04-22.
[13]  武汉市统计局. 武汉市第七次全国人口普查公报[EB/OL].
https://tjj.wuhan.gov.cn/ztzl_49/pczl/202109/t20210916_1779157.shtml, 2021-09-16.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413