|
基于忆阻神经网络的图像边缘检测的FPGA硬件实现
|
Abstract:
基于忆阻器的高集成度和非易失性等特点,本文将忆阻器应用于传统神经网络模型中,对原有的脉冲耦合神经网络进行创新,将两个忆阻元件反向并联替代神经网络连接权值,形成忆阻神经网络。同时利用忆阻神经网络可对图片实现边缘检测的特性,将边缘检测结果图与FPGA结合,通过串口通信,SDRAM存储,TFT显示等模块,使用Verilog语言对各个硬件模块进行描述,最后成功在TFT显示屏上显示出结果图。
Based on the high integration and non-volatility of memristors, this paper applies memristors to the traditional neural network model, innovates the original pulse-coupled neural network, and re-places the neural network connection weights of two memristive elements in reverse parallel to form a memristive neural network. At the same time, the memristive neural network can be used to realize the edge detection characteristics of the picture, the edge detection result graph is combined with the FPGA, through serial port communication, SDRAM storage, TFT display and other modules, each hardware module is described in Verilog language, and finally the result graph is successfully displayed on the TFT display.
[1] | Al-Mansor, E., Al-Jabbar, M. and Ben, I.A. (2023) Medical Image Edge Detection in the Framework of Quantum Rep-resentations. Alexandria Engineering Journal, 81, 234-242. https://doi.org/10.1016/j.aej.2023.09.008 |
[2] | Zang, L., Liang, W. and Ke, H.C. (2023) Research on Liver Cancer Segmentation Method Based on PCNN Image Processing and SE-ResUnet. Scientific Reports, 13, Article Number: 12779.
https://doi.org/10.1038/s41598-023-39240-0 |
[3] | Feng, Y.H., Wei, Y.G. and Sun, S. (2023) Fish Abundance Es-timation from Multi-Beam Sonar by Improved MCNN. Aquatic Ecology, 57, 895-911. https://doi.org/10.1007/s10452-023-10007-z |
[4] | Al Ali, Z.T. and Abdulghani, A.S. (2023) Fire and Blood Detec-tion System in Disaster Environment Using UAV and FPGA. Multimedia Tools and Applications, 82, 43315-43333. https://doi.org/10.1007/s11042-023-15507-6 |
[5] | Chinmaya, P., Ayan, S. and Kumar, M.N. (2022) Parameter Adaptive Unit-Linking Dual-Channel PCNN Based Infrared and Visible Image Fusion. Neurocomputing, 514, 21-38. https://doi.org/10.1016/j.neucom.2022.09.157 |
[6] | Sangani Dhara, J., Thakker Rajesh, A. and Panchal, S.D. (2021) Pansharpening of Satellite Images with Convolutional Sparse Coding and Adaptive PCNN-Based Approach. Journal of the Indian Society of Remote Sensing, 49, 2989-3004.
https://doi.org/10.1007/s12524-021-01440-4 |
[7] | An, F.P., Li, X.W. and Ma, X.M. (2021) Medical Image Classi-fication Algorithm Based on Visual Attention Mechanism-MCNN. Oxidative Medicine and Cellular Longevity, 2021, Article ID 6280690.
https://doi.org/10.1155/2021/6280690 |
[8] | Hu, X.F., Duan, S.K. and Wang, L.D. (2012) A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory. Abstract and Applied Analysis, 2012, Article ID 405739.
https://doi.org/10.1155/2012/405739 |
[9] | Thamizharasan, V. and Kasthuri, N. (2023) High-Speed Hybrid Multi-plier Design Using a Hybrid Adder with FPGA Implementation. IETE Journal of Research, 69, 2301-2309. https://doi.org/10.1080/03772063.2021.1912655 |
[10] | 李营, 殷小杭, 吕兆承. 基于FPGA的VGA汉字显示器设计[J]. 延安大学学报(自然科学报), 2018, 44(4): 365-368+374. |
[11] | 胡艳茹. 基于FPGA车牌图像识别的设计与实现[J]. 物联网技术, 2023, 13(10): 29-32. |
[12] | 郭靖丰. 基于FPGA和SD卡的VGA图片显示与切换装置[J]. 计算机软件及计算机应用, 2022, 36(7): 98-100. |
[13] | 兰唯, 扈啸. 基于FPGA的上电时序控制[J]. 自动化应用, 2023, 64(16): 213-215. |
[14] | 黄姣英, 赵如豪, 高成. 基于FPGA的DDR3 SDRAM控制器设计[J]. 现代电子技术, 2022, 45(22): 68-74. |
[15] | 江瑜, 朱铁柱, 蒋青松. 基于FPGA的卷积神经网络硬件加速器设计[J]. 电子器件, 2023, 46(4): 973-977. |
[16] | 孙百洋, 冷建伟, 赵嘉祺. 基于FPGA的Sobel边缘检测算法研究与实现[J]. 化工自动化及仪表, 2018, 45(3): 180-183+231. |
[17] | 卢晶, 胡钢. 基于PCNN算法图像边缘检测及系统级实现[J]. 沈阳工业大学学报, 2019, 41(1): 73-78. |
[18] | 刘怡俊, 曹宇, 叶武剑. 基于FPGA并行加速的脉冲神经网络在线学习硬件结构的设计与实现[J]. 华南理工大学学报(自然科学报), 2023, 51(5): 104-113. |
[19] | 李亚利. 基于FPGA的实时彩色图像边缘检测系统设计和实现分析[J]. 电子设计工程, 2019, 27(12): 168-172. |