全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多型卷积混合的高光谱非烟物质检测方法
Multi-Convolution Fusion Based Hyperspectral Non-Tobacco-Leaf Materials Detection Method

DOI: 10.12677/JISP.2024.131008, PP. 76-91

Keywords: 高光谱,非烟杂物检测,多型卷积混合
Hyperspectral
, Non-Tobacco Material Detection, Multi-Convlution Fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

有效减少烟叶中的非烟物质,特别是减少在加工过程不慎混入的次生非烟物质一直是烟草工业中的挑战性问题。本文提出了一种基于MCFnet (Multiple Convolution Fusion U-NET)模型的高光谱非烟物质检测方法。它通过在U-NET模型的下采样段、中间段和上采样段分别使用中心差分卷积残差模块,快速傅立叶卷积残差模块和常规卷积层的特定混合,实现高质量的非烟杂物分割结果,完成非烟物质的定位与类型识别。模型的训练使用加权交叉熵和Dice损失函数的组合以保证模型经充分训练后能得到较好的性能。测试结果表明:对面积不小于10 mm × 10 mm的8类典型非烟杂物的检测,虚警率为1.12%,漏检率为0.45%,对不考虑杂物类别,即把所有非烟杂物作为一类,且包含了部分训练集中未出现的杂物类别的检测,虚警率为3%,漏检率为2.4%。与现有非烟杂物检测方法比较,性能有显著提升。此外,已在湖南中烟下属复烤厂完成了系统的实际部署与模型性能验证。
A challenging problem in tobacco industry is to efficiently decrease non-tobacco-leaf materials and especially the secondary produced ones during tobacco production. In this work, we present a non-tobacco-leaf materials detection method by using hyper-spectral images and the proposed Multiple Convolution Fusion U-NET. The method integrates center differential convoltion residule modual, fast Fourier transformation convolution residule modual and standard convolution into the U-NET model and respectively deploys each of them to the downsampling stage, center stage and upsampling stage of U-NET. To this end, the quality of impurity segmentation can be guaranteed, which further achieves accurate localiation and recogtion. We combine weighted cross entropy loss and Dice loss to train our model as we find it effectively and efficiently for sufficient training. The overall method achieved a false-alarm rate of 1.12% and a missed-detection rate of 0.45% for eight typical non-tobacco materials with the size less than 10 mm × 10 mm. When test in the case of not considering the types of non-tobacco materials, and a number of new non-tobacco materials being involved, the proposed method achieved 3% false-alarm rate and 2.4% missed-detection rate. A significant improvement is also found when compared with existing non-tobacco-leaf materials detection method. Moreover, system deployment and model performance validation have been finished in a tobacco factory of Chinese Tobacco Industry Hunan Co. Ltd.

References

[1]  刘配文, 温圣贤. 打叶复烤环节中非烟杂物的控制措施[J]. 作物研究, 2013(27): 51-54.
[2]  张长华, 赵红枫, 胡伟, 等. 烟草原料中主要非烟物质的成因分析[J]. 2013, 34(1): 90-93.
[3]  烤烟中非烟物质控制技术规程, 中华人民共和国烟草行业标准, YC/T 370-2010 [S]. 北京: 国家烟草专卖局, 2010: 4-7.
[4]  Li, Z.K., Fan, Y.J., Zou, Y.S., Wu, M.Y. and Liu, G.Y. (2014) Study and Application of Impurity Removal Methods in Tobacco Production. Ad-vanced Materials Research, 1049-1050, 1131-1134.
https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.1131
[5]  Kai, C., Qian, X., Bo, X., Chao, M. and Wei, Z.Z. (2019) A Machine Vision Algorithm for Foreign Bodies Detection in Tobacco Conveyor. 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29-30 August 2019, 1-6.
https://doi.org/10.1109/ISSI47111.2019.9043657
[6]  Zhang, F. and Zhang, X. (2011) Classification and Quality Evaluation of Tobacco Leaves Based on Image Processing and Fuzzy Comprehensive Evaluation. Sensors, 11, 2369-2384.
https://doi.org/10.3390/s110302369
[7]  Sun, J., Zhou, X., Wu, X., et al. (2016) Identification of Moisture Content in Tobacco Plant Leaves Using Outlier Sample Eliminating Algorithms and Hyperspectral Data. Bio-chemical and Biophysical Research Communications, 471, 226-232.
https://doi.org/10.1016/j.bbrc.2016.01.125
[8]  Li, Y. and Shen, Y. (2023) Design and Application of Tobacco Impurity Removal Model Based on Convolutional Neural Network. 2023 IEEE 3rd International Conference on Elec-tronic Technology, Communication and Information (ICETCI), Changchun, 26-28 May 2023, 1600-1605.
https://doi.org/10.1109/ICETCI57876.2023.10176382
[9]  Ang, K.L.-M. and Seng, J.K.P. (2021) Big Data and Machine Learning with Hyperspectral Information in Agriculture. IEEE Access, 9, 36699-36718.
https://doi.org/10.1109/ACCESS.2021.3051196
[10]  Kumar, A., et al. (2020) UAV Based Remote Sensing for Tassel Detection and Growth Stage Estimation of Maize Crop Using Multispectral Images. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September-2 October 2020, 1588-1591.
https://doi.org/10.1109/IGARSS39084.2020.9323266
[11]  Zhu, H., Chu, B., Zhang, C., et al. (2017) Hyperspec-tral Imaging or Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Ma-chine-Learning Classifiers. Scientific Reports, 7, Article Number: 4125.
https://doi.org/10.1038/s41598-017-04501-2
[12]  Zhang, L., Ma, X., Li, Z. and Liu, Y. (2019) Application of Hyperspectral Imaging Technology in Classification of Tobacco Leaves and Impurities. 2019 2nd International Confer-ence on Safety Produce Informatization (IICSPI) Chongqing, 28-30 November 2019, 157-160. https://ieeexplore.ieee.org/abstract/document/9095975
[13]  Tang, J., Zhou, H., Wang, T., Jin, Z., Wang, Y. and Wang, X. (2022) Cascaded Foreign Object Detection in Manufacturing Processes Using Convolutional Neural Networks and Synthetic Data Generation Methodology. Journal of Intelligent Manufacturing, 34, 2925-2941.
https://doi.org/10.1007/s10845-022-01976-3
[14]  Amri, M.B., Yedjour, D., El Amin Larabi, M. and Bakhti, K. (2022) Stadium Detection from Alsat-2 and Google-Earth Multispectral Images Using YOLOv5 and Mask R-CNN. 2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS), Oum El Bouaghi, 12-13 October 2022, 1-4.
https://doi.org/10.1109/PAIS56586.2022.9946887
[15]  Wang, Y., Feng, W., Jiang, K., Li, Q., Lv, R. and Tu, J. (2023) Real-Time Damaged Building Region Detection Based on Improved YOLOv5s and Embedded System from UAV Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 4205-4217.
https://doi.org/10.1109/JSTARS.2023.3268312
[16]  Zhu, X., Lyu, S., Wang, X. and Zhao, Q. (2021) TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, 11-17 October 2021, 2778-2788.
https://doi.org/10.1109/ICCVW54120.2021.00312
[17]  Wang, Y., Ouyang, Z., Han, R., Yin, Z. and Yang, Z. (2022) YOLOMask: Real-Time Instance Segmentation with Integrating YOLOv5 and Orien Mask. 2022 IEEE 22nd In-ternational Conference on Communication Technology (ICCT), Nanjing, 11-14 November 2022, 1646-1650.
https://doi.org/10.1109/ICCT56141.2022.10073387

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413