全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于肠道微生态治疗糖尿病肾病的研究进展
Research Progress in the Treatment of Diabetic Nephropathy Based on Intestinal Microecology

DOI: 10.12677/HJBM.2024.141009, PP. 81-89

Keywords: 肠道菌群,肠肾轴,糖尿病肾病
Intestinal Flora
, Enterorenal Axis, Diabetic Nephropathy

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道微生态在糖尿病肾病(DKD)进展中的作用越来越受到关注。一方面,肾功能下降会增加循环尿毒症毒素,影响肠道菌群的组成和功能。另一方面,肠道菌群失调会破坏上皮屏障,导致内毒素暴露增加,诱发微生态炎症级联反应,包括抑制黏附分子、趋化因子、细胞因子、免疫细胞和细胞内信号通路的表达,从而加剧肾脏损伤。本综述主要总结了肠–肾轴在糖尿病肾病进展中的证据,以期为糖尿病肾病的临床治疗提供新的思路。
The role of intestinal microecology in the progression of diabetic nephropathy (DKD) has attracted more and more attention. On the one hand, decreased renal function will increase circulating uremic toxins and affect the composition and function of intestinal flora. On the other hand, the imbalance of intestinal flora can destroy the epithelial barrier, lead to increased endotoxin exposure, and induce microecological inflammatory cascade reactions, including inhibition of the expression of adhesion molecules, chemokines, cytokines, immune cells and intracellular signal pathways, thus aggravating renal damage. This review mainly summarizes the evidence of enterorenal axis in the progression of diabetic nephropathy, in order to provide new ideas for the clinical treatment of diabetic nephropathy.

References

[1]  Shine, E.E. and Crawford, J.M. (2021) Molecules from the Microbiome. Annual Review of Biochemistry, 90, 789-815.
https://doi.org/10.1146/annurev-biochem-080320-115307
[2]  Amato, K.R., Arrieta, M.C., Azad, M.B., Bailey, M.T., Broussard, J.L., Bruggeling, C.E., Claud, E.C., et al. (2021) The Human Gut Microbiome and Health Inequities. Proceedings of the National Academy of Sciences of the United States of America, 118, e2017947118.
https://doi.org/10.1146/annurev-biochem-080320-115307
[3]  Kriss, M., Hazleton, K.Z., Nusbacher, N.M., Martin, C.G. and Lozupone, C.A. (2018) Low Diversity Gut Microbiota Dysbiosis: Drivers, Functional Implications and Recovery. Current Opinion in Microbiology, 44, 34-40.
https://doi.org/10.1016/j.mib.2018.07.003
[4]  Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D.L. and Bajaj, J.S. (2021) The Microbiota in Cirrhosis and Its Role in Hepatic Decompensation. Journal of Hepatology, 75, S67-S81.
https://doi.org/10.1016/j.jhep.2020.11.013
[5]  Dabke, K., Hendrick, G. and Devkota, S. (2019) The Gut Microbiome and Metabolic Syndrome. Journal of Clinical Investigation, 129, 4050-4057.
https://doi.org/10.1172/JCI129194
[6]  He, F. and Li, Y. (2020) Role of Gut Microbiota in the Development of Insulin Resistance and the Mechanism Underlying Polycystic Ovary Syndrome: A Review. Journal of Ovarian Research, 13, Article No. 73.
https://doi.org/10.1186/s13048-020-00670-3
[7]  Niewczas, M.A., Pavkov, M.E., Skupien, J., Smiles, A., Md Dom, Z.I., Wilson, J.M., Park, J., et al. (2019) A Signature of Circulating Inflammatory Proteins and Development of End-Stage Renal Disease in Diabetes. Nature Medicine, 25, 805-813.
https://doi.org/10.1038/s41591-019-0415-5
[8]  Boughton, C.K., Tripyla, A., Hartnell, S., Daly, A., Herzig, D., Wilinska, M.E., Czerlau, C., et al. (2021) Fully Automated Closed-Loop Glucose Control Compared with Standard Insulin Therapy in Adults with Type 2 Diabetes Requiring Dialysis: An Open-Label, Randomized Crossover Trial. Nature Medicine, 27, 1471-1476.
https://doi.org/10.1038/s41591-021-01453-z
[9]  Papadopoulou-Marketou, N., Paschou, S.A., Marketos, N., Adamidi, S., Adamidis, S. and Kanaka-Gantenbein, C. (2018) Diabetic Nephropathy in Type 1 Diabetes. Minerva Medica, 109, 218-228.
https://doi.org/10.23736/S0026-4806.17.05496-9
[10]  Zhang, W.R. and Parikh, C.R. (2019) Biomarkers of Acute and Chronic Kidney Disease. Annual Review of Physiology, 81, 309-333.
https://doi.org/10.1146/annurev-physiol-020518-114605
[11]  Lin, J.R., Wang, Z.T., Sun, J.J., Yang, Y.Y., Li, X.X., Wang, X.R., et al. (2022) Gut Microbiota and Diabetic Kidney Diseases: Pathogenesis and Therapeutic Perspectives. World Journal of Diabetes, 13, 308-318.
https://doi.org/10.4239/wjd.v13.i4.308
[12]  Maiti, A.K. (2021) Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 22, Article No. 9985.
https://doi.org/10.3390/ijms22189985
[13]  Zhong, C., Dai, Z., Chai, L., Wu, L., Li, J., Guo, W., et al. (2021) The Change of Gut Microbiota-Derived Short-Chain Fatty Acids in Diabetic Kidney Disease. Journal of Clinical Laboratory Analysis, 35, e24062.
https://doi.org/10.1002/jcla.24062
[14]  Cai, K., Ma, Y., Cai, F., Huang, X., Xiao, L., Zhong, C., et al. (2022) Changes of Gut Microbiota in Diabetic Nephropathy and Its Effect on the Progression of Kidney Injury. Endocrine, 76, 294-303.
https://doi.org/10.1007/s12020-022-03002-1
[15]  Huang, W., Zhou, L., Guo, H., Xu, Y. and Xu, Y. (2019) The Role of Short-Chain Fatty Acids in Kidney Injury Induced by Gut-Derived Inflammatory Response. Metabolism, 68, 20-30.
https://doi.org/10.1016/j.metabol.2016.11.006
[16]  Vaziri, N.D., Yuan, J. and Norris, K. (2023) Role of Urea in Intestinal Barrier Dysfunction and Disruption of Epithelial Tight Junction in Chronic Kidney Disease. American Journal of Nephrology, 37, 1-6.
https://doi.org/10.1159/000345969
[17]  Khan, I., Huang, Z., Liang, L., Li, N., Ali, Z., Ding, L., Hong, M., et al. (2021) Ammonia Stress Influences Intestinal Histomorphology, Immune Status and Microbiota of Chinese Striped-Neck Turtle (Mauremys sinensis). Ecotoxicology and Environmental Safety, 222, Article ID: 112471.
https://doi.org/10.1016/j.ecoenv.2021.112471
[18]  Fernandez-Prado, R., Esteras, R., Perez-Gomez, M., Gracia-Iguacel, C., Gonzalez-Parra, E., Sanz, A., Ortiz, A., et al. (2019) Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients, 9, Article No. 489.
https://doi.org/10.3390/nu9050489
[19]  Mao, Z.-H., Gao, Z.-X., Liu, D.-W., Liu, Z.-S., Wu, P., et al. (2023) Gut Microbiota and Its Metabolites-Molecular Mechanisms and Management Strategies in Diabetic Kidney Disease. Frontiers in Immunology, 14, Article ID: 1124704.
https://doi.org/10.3389/fimmu.2023.1124704
[20]  Heaney, L.M., Davies, O.G. and Selby, N.M. (2019) Gut Microbial Metabolites as Mediators of Renal Disease: Do Short-Chain Fatty Acids Offer Some Hope? Future Science OA, 5, FSO384.
https://doi.org/10.4155/fsoa-2019-0013
[21]  Ramezani, A., Massy, Z.A., Meijers, B., Evenepoel, P., Vanholder, R. and Raj, D.S. (2020) Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American Journal of Kidney Diseases, 67, 483-498.
https://doi.org/10.1053/j.ajkd.2015.09.027
[22]  Zhang, F., Qi, L., Feng, Q., Zhang, B., Li, X., Liu, C., Li, W., et al. (2021) HIPK2 Phosphorylates HDAC3 for NF-κB Acetylation to Ameliorate Colitis-Associated Colorectal Carcinoma and Sepsis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2021798118.
https://doi.org/10.1073/pnas.2021798118
[23]  Hu, X., Li, S., Fu, Y. and Zhang, N. (2019) Targeting Gut Microbiota as a Possible Therapy for Mastitis. European Journal of Clinical Microbiology & Infectious Diseases, 38, 1409-1423.
https://doi.org/10.1007/s10096-019-03549-4
[24]  Benson, K., Cramer, S. and Galla, H.-J. (2023) Impedance-Based Cell Monitoring: Barrier Properties and Beyond. Fluids and Barriers of the CNS, 10, 5.
https://doi.org/10.1186/2045-8118-10-5
[25]  Odijk, M., van der Meer, A.D., Levner, D., Kim, H.J., van der Helm, M.W., Segerink, L.I., Frimat, J.-P., Hamilton, G.A., Ingber, D.E. and van den Berg, A. (2019) Measuring Direct Current Trans-Epithelial Electrical Resistance in Organ-on- a-Chip Microsystems. Lab on a Chip, 15, 745-752.
https://doi.org/10.1039/C4LC01219D
[26]  Groschwitz, K.R. and Hogan, S.P. (2019) Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. Journal of Allergy and Clinical Immunology, 124, 3-20.
https://doi.org/10.1016/j.jaci.2009.05.038
[27]  Gareau, M.G., Sherman, P.M. and Walker, W.A. (2020) Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 7, 503-514.
https://doi.org/10.1038/nrgastro.2010.117
[28]  LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D. and Ventura, M. (2023) Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Current Opinion in Biotechnology, 24, 160-168.
https://doi.org/10.1016/j.copbio.2012.08.005
[29]  Hagihara, M., Kuroki, Y., Ariyoshi, T., Higashi, S., Fukuda, K., Yamashita, R., Matsumoto, A., Mori, T., Mimura, K., Yamaguchi, M., et al. (2020) Clostridium Butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience, 23, Article ID: 100772.
https://doi.org/10.1016/j.isci.2019.100772
[30]  Nusrat, A., Turner, J.R. and Madara, J.L. (2020) Molecular Physiology and Pathophysiology of Tight Junctions. IV. Regulation of Tight Junctions by Extracellular Stimuli: Nutrients, Cytokines, and Immune Cells. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 279, G851-G857.
https://doi.org/10.1152/ajpgi.2000.279.5.G851
[31]  Arrieta, M.C., Bistritz, L. and Meddings, J.B. (2018) Alterations in Intestinal Permeability. Gut, 55, 1512-1520.
https://doi.org/10.1136/gut.2005.085373
[32]  Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M. and Zununi Vahed, S. (2017) The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomedicine & Pharmacotherapy, 93, 412-419.
https://doi.org/10.1016/j.biopha.2017.06.066
[33]  de Andrade, L.S., Ramos, C.I. and Cuppari, L. (2019) The Cross-Talk between the Kidney and the Gut: Implications for Chronic Kidney Disease. Nutrire, 42, 2-14.
https://doi.org/10.1186/s41110-017-0054-x
[34]  Soleimani, A., Zarrati Mojarrad, M., Bahmani, F., Taghizadeh, M., Ramezani, M., Tajabadi-Ebrahimi, M., Jafari, P., et al. (2021) Probiotic Supplementation in Diabetic Hemodialysis Patients Has Beneficial Metabolic Effects. Kidney International, 91, 435-442.
https://doi.org/10.1016/j.kint.2016.09.040
[35]  Honda, K. and Littman, D.R. (2021) The Microbiota in Adaptive Immune Homeostasis and Disease. Nature, 535, 75-84.
https://doi.org/10.1038/nature18848
[36]  Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Regulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624.
https://doi.org/10.1146/annurev-immunol-042718-041841
[37]  Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Microbiota and Immunity in Health and Disease. Cell Research, 30, 492-506.
https://doi.org/10.1038/s41422-020-0332-7
[38]  Cai, H.D., Su, S.L., Guo, J.M. and Duan, J.A. (2021) Effect of Salviae Miltiorrhizae Radix et Rhizoma on Diversity of Intestinal Flora in Diabetic Nephropathy Rats. China Journal of Chinese Materia Medica, 46, 426-435.
[39]  Li, Y., Su, X., Gao, Y., Lv, C., Gao, Z., Liu, Y., Wang, Y., et al. (2020) The Potential Role of the Gut Microbiota in Modulating Renal Function in Experimental Diabetic Nephropathy Murine Models Established in Same Environment. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1866, Article ID: 165764.
https://doi.org/10.1016/j.bbadis.2020.165764
[40]  Yang, J., Kim, C.J., Go, Y.S., Lee, H.Y., Kim, M.G., Oh, S.W., Cho, W.Y., et al. (2020) Intestinal Microbiota Control Acute Kidney Injury Severity by Immune Modulation. Kidney International, 98, 932-946.
https://doi.org/10.1016/j.kint.2020.04.048
[41]  Nakade, Y., Iwata, Y., Furuichi, K., Mita, M., Hamase, K., Konno, R., Miyake, T., et al. (2018) Gut Microbiota-Derived D-Serine Protects against Acute Kidney Injury. JCI Insight, 3, e97957.
https://doi.org/10.1172/jci.insight.97957
[42]  Barrios, C., Beaumont, M., Pallister, T., Villar, J., Goodrich, J.K., Clark, A., Pascual, J., et al. (2022) Gut-Microbiota- Metabolite Axis in Early Renal Function Decline. PLOS ONE, 10, e0134311.
https://doi.org/10.1371/journal.pone.0134311
[43]  Jiang, S., Xie, S., Lv, D., Zhang, Y., Deng, J., Zeng, L. and Chen, Y. (2021) A Reduction in the Butyrate Producing Species Roseburia spp. and Faecalibacterium prausnitzii Is Associated with Chronic Kidney Disease Progression. Antonie van Leeuwenhoek, 109, 1389-1396.
https://doi.org/10.1007/s10482-016-0737-y
[44]  Jiang, S., Xie, S., Lv, D., Wang, P., He, H., Zhang, T., Zhou, Y., et al. (2017) Alteration of the Gut Microbiota in Chinese Population with Chronic Kidney Disease. Scientific Reports, 7, Article No. 2870.
https://doi.org/10.1038/s41598-017-02989-2
[45]  Tao, S., Li, L., Li, L., Liu, Y., Ren, Q., Shi, M., Liu, J., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592.
https://doi.org/10.1007/s00592-019-01316-7
[46]  Stanford, J., Charlton, K., Stefoska-Needham, A., Ibrahim, R. and Lambert, K. (2020) The Gut Microbiota Profile of Adults with Kidney Disease and Kidney Stones: A Systematic Review of the Literature. BMC Nephrology, 21, Article No. 215.
https://doi.org/10.1186/s12882-020-01805-w
[47]  Spychala, M.S., Venna, V.R., Jandzinski, M., Doran, S.J., Durgan, D.J., Ganesh, B.P., Ajami, N.J., et al. (2018) Age‐Related Changes in the Gut Microbiota Influence Systemic Inflammation and Stroke Outcome. Annals of Neurology, 84, 23-36.
https://doi.org/10.1002/ana.25250
[48]  Salguero, M.V., Al-Obaide, M.A.I., Singh, R., Siepmann, T. and Vasylyeva, T.L. (2019) Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients with Chronic Kidney Disease. Experimental and Therapeutic Medicine, 18, 3461-3469.
https://doi.org/10.3892/etm.2019.7943
[49]  Takeda, K. and Akira, S. (2022) TLR Signaling Pathways. Seminars in Immunology, 16, 3-9.
https://doi.org/10.1016/j.smim.2003.10.003
[50]  Mudaliar, H., Pollock, C. and Panchapakesan, U. (2022) Role of Toll-Like Receptors in Diabetic Nephropathy. Clinical Science (London), 126, 685-694.
https://doi.org/10.1042/CS20130267
[51]  Mueller, N.T., Zhang, M., Juraschek, S.P., Miller, E.R. and Appel, L.J. (2020) Effects of High-Fiber Diets Enriched with Carbohydrate, Protein, or Unsaturated Fat on Circulating Short Chain Fatty Acids: Results from the OmniHeart Randomized Trial. The American Journal of Clinical Nutrition, 111, 545-554.
https://doi.org/10.1093/ajcn/nqz322
[52]  Lin, M.Y., de Zoete, M.R., van Putten, J.P. and Strijbis, K. (2023) Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Frontiers in Immunology, 6, Article No. 554.
https://doi.org/10.3389/fimmu.2015.00554
[53]  Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M. and Koga, Y. (2017) A Proliferative Probiotic Bifidobacterium Strain in the Gut Ameliorates Progression of Metabolic Disorders via Microbiota Modulation and Acetate Elevation. Scientific Reports, 7, Article No. 43522.
https://doi.org/10.1038/srep43522
[54]  Huang, W., Guo, H.L., Deng, X., Zhu, T.T., Xiong, J.F., Xu, Y.H. and Xu, Y. (2017) Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes, 125, 98-105.
https://doi.org/10.1055/s-0042-121493
[55]  Chen, T., Kim, C.Y., Kaur, A., Lamothe, L., Shaikh, M., Keshavarzian, A. and Hamaker, B.R. (2017) Dietary Fibre-Based SCFA Mixtures Promote Both Protection and Repair of Intestinal Epithelial Barrier Function in a Caco-2 Cell Model. Food & Function, 8, 1166-1173.
https://doi.org/10.1039/C6FO01532H
[56]  Khan, S. and Jena, G. (2022) Sodium Butyrate, a HDAC Inhibitor Ameliorates eNOS, iNOS and TGF-β1-Induced Fibrogenesis, Apoptosis and DNA Damage in the Kidney of Juvenile Diabetic Rats. Food and Chemical Toxicology, 73, 127-139.
https://doi.org/10.1016/j.fct.2014.08.010
[57]  Lu,C.C., Hu, Z.B., Wang, R., Hong, Z.H., Lu, J., Chen, P.P., Zhang, J.X., et al. (2020) Gut Microbiota Dysbiosis-Induced Activation of the Intrarenal Renin-Angiotensin System Is Involved in Kidney Injuries in Rat Diabetic Nephropathy. Acta Pharmacologica Sinica, 41, 1111-1118.
https://doi.org/10.1038/s41401-019-0326-5
[58]  Tajiri, K. and Shimizu, Y. (2018) Branched-Chain Amino Acids in Liver Diseases. Translational Gastroenterology and Hepatology, 3, 47.
https://doi.org/10.21037/tgh.2018.07.06
[59]  Feng, Y.-L., Cao, G., Chen, D.-Q., Vaziri, N.D., Chen, L., Zhang, J., et al. (2019) Microbiome-Metabolomics Reveals Gut Microbiota Associated with Glycine-Conjugated Metabolites and Polyamine Metabolism in Chronic Kidney Disease. Cellular and Molecular Life Sciences, 76, 4961-4978.
https://doi.org/10.1007/s00018-019-03155-9
[60]  Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J. and Raj, D. (2017) Gut Microbiome in Chronic Kidney Disease: Challenges and Opportunities. Translational Research, 179, 24-37.
https://doi.org/10.1016/j.trsl.2016.04.007
[61]  Winther, S.A., ?llgaard, J.C., Tofte, N., Tarnow, L., Wang, Z., Ahluwalia, T.S., et al. (2019) Utility of Plasma Concentration of Trimethylamine n-Oxide in Predicting Cardiovascular and Renal Complications in Individuals with Type 1 Diabetes. Diabetes Care, 42, 1512-1520.
https://doi.org/10.2337/dc19-0048
[62]  He, L., Yang, W., Yang, P., Zhang, X. and Zhang, A. (2022) Higher Serum Trimethylamine-n-Oxide Levels Are Associated with Increased Abdominal Aortic Calcification in Hemodialysis Patients. Renal Failure, 44, 2019-2027.
https://doi.org/10.1080/0886022X.2022.2145971
[63]  Kikuchi, K., Saigusa, D., Kanemitsu, Y., Matsumoto, Y., Thanai, P., Suzuki, N., et al. (2019) Gut Microbiome-Derived Phenyl Sulfate Contributes to Albuminuria in Diabetic Kidney Disease. Nature Communications, 10, Article No. 1835.
[64]  Molinaro, A., Lassen, P.B., Henricsson, M., Wu, H., Adriouch, S., Belda, E., et al. (2020) Imidazole Propionate Is Increased in Diabetes and Associated with Dietary Patterns and Altered Microbial Ecology. Nature Communications, 11, Article No. 5881.
[65]  Fernandes, R., Viana, S.D., Nunes, S. and Reis, F. (2019) Diabetic Gut Microbiota Dysbiosis as an Inflammaging and Immunosenescence Condition That Fosters Progression of Retinopathy and Nephropathy. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1865, 1876-1897.
https://doi.org/10.1016/j.bbadis.2018.09.032
[66]  Rossi, M., Campbell, K.L., Johnson, D.W., Stanton, T., Vesey, D.A., Coombes, J.S., et al. (2014) Protein-Bound Uremic Toxins, Inflammation and Oxidative Stress: A Cross-Sectional Study in Stage 3-4 Chronic Kidney Disease. Archives of Medical Research, 45, 309-317.
https://doi.org/10.1016/j.arcmed.2014.04.002
[67]  Koppe, L., Fouque, D. and Soulage, C.O. (2018) Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Current Diabetes Reports, 18, Article No. 97.
https://doi.org/10.1007/s11892-018-1064-7
[68]  Krukowski, H., Valkenburg, S., Madella, A.-M., Garssen, J., van Bergenhenegouwen, J., Overbeek, S.A., et al. (2022) Gut Microbiome Studies in CKD: Opportunities, Pitfalls and Therapeutic Potential. Nature Reviews Nephrology, 19, 87-101.
https://doi.org/10.1038/s41581-022-00647-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413