全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高应力下岩石损伤破裂机制研究进展
Research Progress of Rock Damage Failure Mechanism under High Stress

DOI: 10.12677/HJCE.2024.131009, PP. 56-64

Keywords: 高应力,岩石力学特性,声发射特征,损伤机制
High Stress
, Mechanical Properties of Rock, Acoustic Emission Characteristics, Damage Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着我国隧道和地下空间迅速向深部发展,深入认识高应力下洞周围岩力学特性及损伤破裂机制对岩石地下工程施工设计和安全防护具有重要意义。从深埋岩石力学特性、声发射特征及损伤破裂机制等三个方面介绍了高应力下岩石损伤破裂机制研究进展,表明:1) 目前针对不同应力、加卸载速率等条件下的岩石变形、强度和破坏特征研究已相对成熟,但针对多场耦合等复杂环境下岩石力学特性及微细观破裂机制方面的研究还相对较少。2) 利用声发射特征参数变化规律来反演岩石破裂特征及前兆点预测的研究已较为成熟,但针对岩石峰值后残余阶段的声发射特征研究及利用声发射特征参数反演岩石损伤理论的归一化研究尚处于一个不断完善的探索阶段。3) 目前所建立的岩石统计损伤本构模型考虑了岩石材料的各向异性,使模型的计算结果更趋于实际,但大多仍处于理论阶段,有待结合室内或者现场试验验证。
With the rapid development of tunnels and underground space to the deep in China, it is of great significance to deeply understand the mechanical characteristics and damage and fracture mechanism of rock around caves under high stress for the construction design and safety protection of rock underground engineering. The research progress of rock damage and fracture mechanism under high stress is introduced from three aspects: mechanical properties, acoustic emission characteristics and damage and fracture mechanism of deep buried rock. 1) At present, studies on rock deformation, strength and failure characteristics under different stresses, loading and unloading rates have been relatively mature, but there are relatively few studies on rock mechanical properties and micro-fracture mechanisms under complex environments such as multi-field coupling. 2) The research on inversion of rock fracture characteristics and prediction of precursor points by using the variation law of acoustic emission characteristic parameters has been relatively mature, but the research on acoustic emission characteristics in the residual stage of rock after peak and the normalization of rock damage theory by using acoustic emission characteristic parameters are still in a constantly improving exploration stage. 3) Currently established rock statistical damage constitutive models take into account the anisotropy of rock materials, which makes the calculation results of the models more practical, but most of them are still in the theoretical stage and need to be combined with laboratory or field tests for verification.

References

[1]  谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.
[2]  谢和平, 高峰, 鞠杨, 等. 深地科学领域的若干颠覆性技术构想和研究方向[J]. 工程科学与技术, 2017, 49(1): 1-8.
[3]  谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305.
[4]  何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813.
[5]  钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性[J]. 防护工程, 2005, 26(5): 1-10.
[6]  王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题III: 地下核爆炸诱发工程性地震效应的计算原理及应用[J]. 岩石力学与工程学报, 2019, 38(4): 695-707.
[7]  王明洋, 周泽平, 钱七虎. 深部岩体的构造和变形与破坏问题[J]. 岩石力学与工程学报, 2006, 25(3): 448-455.
[8]  Li, X.B., Gong, F.Q., Tao, M., et al. (2017) Failure Mechanism and Coupled Static-Dynamic Loading Theory in Deep Hard Rock Mining: A Review. Journal of Rock Mechanics and Geotechnical Engineering, 9, 767-782.
https://doi.org/10.1016/j.jrmge.2017.04.004
[9]  谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研宄与思考[J]. 煤炭学报, 2012, 37(4): 535-542.
[10]  刘月妙, 王驹, 谭国焕, 蔡美峰. 高放废物处置北山预选区深部完整岩石基本物理力学性能及时温效应[J]. 岩石力学与工程学报, 2007(10): 2034-2042.
[11]  王春, 唐礼忠, 程露萍, 陈源, 刘涛, 韦永恒. 三维高静载频繁动态扰动时岩石损伤特性及本构模型[J]. 岩土力学, 2017, 38(8): 2286-2296+2305.
[12]  由爽, 李飞, 纪洪广, 王洪涛, 张乘菡. 高应力高水压下深部花岗岩力学响应联动机制[J]. 煤炭学报, 2020, 45(S1): 219-229.
[13]  蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2013.
[14]  翟少彬. 深埋隧洞岩爆及相关破坏的真三轴试验研究[D]: [博士学位论文]. 南宁: 广西大学, 2022.
[15]  Read, R.S. and Martin, C.D. (1996) Technical Summary of AECL’s Mine-By Experiment. Phase 1. Excavation Response.
[16]  B?ckblom, G. and Martin, C.D. (1999) Recent Experiments in Hard Rocks to Study the Excavation Response: Implications for the Performance of a Nuclear Waste Geological Repository. Tunnelling and Underground Space Technology, 14, 377-394.
https://doi.org/10.1016/S0886-7798(99)00053-X
[17]  Read, R.S. (2004) 20 Years of Excavation Response Studies at AECL’s Underground Research Laboratory. International Journal of Rock Mechanics and Mining Sciences, 41, 1251-1275.
https://doi.org/10.1016/j.ijrmms.2004.09.012
[18]  黄达. 大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D]: [博士学位论文]. 成都: 成都理工大学, 2007.
[19]  春生, 侯靖, 朱永生, 等. 深埋隧洞围岩应力分布与破坏机理[J]. 现代隧道技术, 2011, 48(3): 7-13.
[20]  Vazaios, I., Vlachopoulos, N. and Diederichs, M.S. (2019) Assessing Fracturing Mechanisms and Evolution of Excavation Damaged Zone of Tunnels in Interlocked Rock Masses at High Stresses Using a Finite-Discrete Element Approach. Journal of Rock Mechanics and Geotechnical Engineering, 11, 701-722.
https://doi.org/10.1016/j.jrmge.2019.02.004
[21]  张传庆, 张玲, 周辉, 邱士利. 深部硬岩的力学特性与支护要求[J]. 武汉工程大学学报, 2018, 40(5): 543-549.
[22]  李泓颖, 刘晓辉, 郑钰, 肖文根. 深埋锦屏大理岩渐进破坏过程中的特征能量分析[J]. 岩石力学与工程学报, 2022, 41(S2): 3229-3239.
[23]  杨圣奇, 陆家炜, 田文岭, 等. 不同节理粗糙度类岩石材料三轴压缩力学特性试验研究[J]. 岩土力学, 2018, 39(S1): 21-32.
[24]  徐荣超, 靳一鼎, 李日运, 等. 龙马溪页岩应力-应变门槛值的各向异性特征研究[J]. 岩土工程学报, 2021, 43(12): 2291-2299.
[25]  Zong, Y.J., Han, L.J., Wei, J.J., et al. (2016) Mechanical and Damage Evolution Properties of Sandstone under Triaxial Compression. International Journal of Mining Science and Technology, 4, 601-607.
https://doi.org/10.1016/j.ijmst.2016.05.011
[26]  孙雪, 李二兵, 韩阳, 等. 卸荷路径下花岗岩变形与破坏特征试验研究[J]. 地下空间与工程学报, 2020, 16(3): 665-679.
[27]  陈景涛, 冯夏庭. 高地应力下岩石的真三轴试验研究[J]. 岩石力学与工程学报, 2006(8): 1537-1543.
[28]  Gao, Y.-H., Feng, X.-T., Zhang, X.-W., et al. (2018) Characteristic Stress Levels and Brittle Fracturing of Hard Rocks Subjected to True Triaxial Compression with Low Minimum Principal Stress. Rock Mechanics and Rock Engineering, 51, 3681-3697.
https://doi.org/10.1007/s00603-018-1548-4
[29]  Feng, X.-T., Kong, R., Zhang, X., et al. (2019) Experimental Study of Failure Differences in Hard Rock under True Triaxial Compression. Rock Mechanics and Rock Engineering, 52, 2109-2122.
https://doi.org/10.1007/s00603-018-1700-1
[30]  Kong, R., Tuncay, E., Ulusay, R., et al. (2021) An Experimental Investigation on Stress-Induced Cracking Mechanisms of a Volcanic Rock. Engineering Geology, 280, Article ID: 105934.
https://doi.org/10.1016/j.enggeo.2020.105934
[31]  Li, X., Du, K. and Li, D. (2015) True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress. Rock Mechanics and Rock Engineering, 48, 2185-2196.
https://doi.org/10.1007/s00603-014-0701-y
[32]  Li, X., Feng, F., Li, D., et al. (2018) Failure Characteristics of Granite Influenced by Sample Height-To-Width Ratios and Intermediate Principal Stress under True-Triaxial Unloading Conditions. Rock Mechanics and Rock Engineering, 51, 1321-1345.
https://doi.org/10.1007/s00603-018-1414-4
[33]  Li, Z., Wang, L., Lu, Y., et al. (2018) Experimental Investigation on the Deformation, Strength, and Acoustic Emission Characteristics of Sandstone under True Triaxial Compression. Advances in Materials Science and Engineering, 2018, Article ID: 5241386.
https://doi.org/10.1155/2018/5241386
[34]  尹光志, 李贺, 鲜学福, 等. 工程应力变化对岩石强度特性影响的试验研究[J]. 岩土工程学报, 1987(2): 20-28.
[35]  尹光志, 马波, 刘超, 等. 真三轴应力条件下加卸荷速率对砂岩力学特性与能量特征的影响[J]. 煤炭学报, 2019, 44(2): 454-462.
[36]  林大超, 徐谦, 王仲琦, 刘海波. 岩石压缩破坏强度的一种理论估值方法[J]. 岩石力学与工程学报, 2021, 40(S1): 2603-2612.
[37]  朱珍德, 黄强, 王剑波, 等. 岩石变形劣化全过程细观试验与细观损伤力学模型研究[J]. 岩石力学与工程学报, 2013, 32(6): 1167-1175.
[38]  Lockner, D. (1993) The Role of Acoustic Emission in the Study of Rock Fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, 883-899.
https://doi.org/10.1016/0148-9062(93)90041-B
[39]  Grosse, C.U. and Ohtsu, M. (2008) Acoustic Emission Testing. Springer, Berlin.
https://doi.org/10.1007/978-3-540-69972-9
[40]  Lei, X. and Ma, S. (2014) Laboratory Acoustic Emission Study for Earthquake Generation Process. Earthquake Science, 27, 627-646.
https://doi.org/10.1007/s11589-014-0103-y
[41]  乔兰, 王旭, 李远. 深部花岗闪长岩破坏过程声发射及特征应力特性试验研究[J]. 岩石力学与工程学报, 2014, 33(S1): 2773-2778.
[42]  姜德义, 何怡, 欧阳振华, 等. 砂岩单轴蠕变声发射能量统计与断面形貌分析[J]. 煤炭学报, 2017, 42(6): 1436-1442.
[43]  张艳博, 梁鹏, 田宝柱, 等. 花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2248-2258.
[44]  丁鑫, 肖晓春, 吕祥锋, 等. 煤岩破裂过程声发射时-频信号特征与演化机制[J]. 煤炭学报, 2019, 44(10): 2999-3011.
[45]  Moradian, Z., Einstein, H.H. and Ballivy, G. (2016) Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals. Rock Mechanics and Rock Engineering, 49, 785-800.
https://doi.org/10.1007/s00603-015-0775-1
[46]  Zhao, X.G., Cai, M., Wang, J., et al. (2013) Damage Stress and Acoustic Emission Characteristics of the Beishan Granite. International Journal of Rock Mechanics and Mining Sciences, 64, 258-269.
https://doi.org/10.1016/j.ijrmms.2013.09.003
[47]  Zhao, X.G., Cai, M., Wang, J., et al. (2015) Objective Determination of Crack Initiation Stress of Brittle Rocks under Compression Using AE Measurement. Rock Mechanics and Rock Engineering, 48, 2473-2484.
https://doi.org/10.1007/s00603-014-0703-9
[48]  Eberhardt, E., Stead, D. and Stimpson, B. (1999) Quantifying Progressive Pre-Peak Brittle Fracture Damage in Rock during Uniaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 36, 361-380.
https://doi.org/10.1016/S0148-9062(99)00019-4
[49]  Kim, J.-S., Lee, K.-S., Cho, W.-J., et al. (2015) A Comparative Evaluation of Stress-Strain and Acoustic Emission Methods for Quantitative Damage Assessments of Brittle Rock. Rock Mechanics and Rock Engineering, 48, 495-508.
https://doi.org/10.1007/s00603-014-0590-0
[50]  杨宇生, 尹前锋, 丰丛杰, 等. 考虑损伤修正的岩石统计损伤本构模型研究[J]. 安徽理工大学学报(自然科学版), 2018, 38(4): 70-74.
[51]  Krajcinovic, D. and Silva, M.A.G. (1982) Statistical Aspects of the Continuous Damage Theory. International Journal of Solids and Structures, 18, 551-562.
https://doi.org/10.1016/0020-7683(82)90039-7
[52]  曹文贵, 戴笠, 张超. 深部岩石统计损伤本构模型研究[J]. 水文地质工程地质, 2016, 43(4): 60-65.
[53]  Zhu, Z.N., Tian, H., Wang, R., et al. (2021) Statistical Thermal Damage Constitutive Model of Rocks Based on Weibull Distribution. Arabian Journal of Geosciences, 14, 1-14.
https://doi.org/10.1007/s12517-021-06730-2
[54]  Deng, J. and Gu, D.S. (2011) On a Statistical Damage Constitutive Model for Rock Materials. Computers & Geosciences, 37, 122-128.
https://doi.org/10.1016/j.cageo.2010.05.018
[55]  Cao, W.G., Tan, X., Zhang, C., et al. (2019) Constitutive Model to Simulate Full Deformation and Failure Process for Rocks Considering Initial Compression and Residual Strength Behaviors. Canadian Geotechnical Journal, 56, 649-661.
https://doi.org/10.1139/cgj-2018-0178

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413