全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancement of the Antigenotoxic and Antioxidant Actions of Eugenol from Spice Clove and the Stabilizer Gum Arabic on Colorectal Carcinogenesis

DOI: 10.4236/fns.2024.151004, PP. 71-100

Keywords: Eugenol, Gum Arabic, Carcinogenesis, Oxidative Stress, Genotoxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of phenolic compounds, such as flavonoids, terpenoids and eugenol. In turn, the most common uses of gum arabic are in the form of powder for addition to soft drink syrups, cuisine and baked goods, specifically to stabilize the texture of products, increase the viscosity of liquids and promote the leavening of baked products (e.g., cakes). Both eugenol, extracted from cloves, and gum arabic, extracted from the hardened sap of two species of the Acacia tree, are dietary constituents routinely consumed virtually throughout the world. Both of them are also widely used medicinally to inhibit oxidative stress and genotoxicity. The prevention arm of the study included groups: Ia, IIa, IIIa, Iva, V, VI, VII, VIII. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA, EUG, or 10% GA + EUG by gavage. The treatment arm of the study included groups Ib, IIb, IIIb e IVb, IX, X, XI, XII). Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. The novelty of this study is the investigation of their use alone and together for the prevention and treatment of experimental colorectal carcinogenesis induced by dimethylhydrazine. Our results show that the combined use of 10% gum arabic and eugenol was effective, with antioxidant action in the colon, as well as reducing oxidative stress in all colon segments and preventing and treating genotoxicity in all colon segments. Furthermore, their joint administration reduced the number of aberrant crypts and the number of aberrant crypt foci (ACF) in the distal segment and entire colon, as well as the number of ACF with at least 5 crypts in the entire colon. Thus, our results also demonstrate the synergistic effects of 10% gum arabic together with eugenol (from cloves), with antioxidant, antigenotoxic and anticarcinogenic actions (prevention and treatment) at the doses and durations studied, in the colon of rats submitted to colorectal carcinogenesis induced by dimethylhydrazine.

References

[1]  Inca-Instituto Nacional de Cancer (Brasil) (2022) Estimate|2023—Cancer Incidence in Brazil/Instituto Nacional de Cancer. INCA, Rio de Janeiro.
[2]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[3]  Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C.J., Laversanne, M., Vignat, J., Ferlay, J., Murphy, N. and Bray, F. (2023) Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut, 72, 338-344.
https://doi.org/10.1136/gutjnl-2022-327736
[4]  World Health Organization WHO (2018) Global Cancer Observatory—Globocan.
[5]  Pandurangan, A.K., Divya, T., Kumar, K., Dineshbabu, V., Velavan, B. and Sudhandiran, G. (2018) Colorectal Carcinogenesis: Insights into the Cell Death and Signal Transduction Pathways: A Review. World Journal of Gastrointestinal Oncology, 10, 244-259.
http://dx.doi.org/10.4251/wjgo.v10.i9.244
[6]  Patterson, A.D., Gonzalez, F.J., Perdew, G.H. and Peters, J.M. (2018) Molecular Regulation of Carcinogenesis: Friend and Foe. Toxicological Sciences, 165, 277-283.
https://doi.org/10.1093/toxsci/kfy185
[7]  Basnet, U., Patil, A.R., Kulkarni, A. and Roy, S. (2021) Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. International Journal of Environmental Research and Public Health, 18, Article No. 5525.
https://doi.org/10.3390/ijerph18115525
[8]  Moradi-Marjaneh, R., Hassanian, S.M., Mehramiz, M., Rezayi, M., Ferns, G.A., Khazaei, M. and Avan, A. (2019) Reactive Oxygen Species in Colorectal Cancer: The Therapeutic Impact and Its Potential Roles in Tumor Progression via Perturbation of Cellular and Physiological Dysregulated Pathways. Journal of Cellular Physiology, 234, 10072-10079.
https://doi.org/10.1002/jcp.27881
[9]  Silva-Reis, R., Castro-Ribeiro, C., Goncalves, M., Ferreira, T., Pires, M.J., Iglesias-Aguirre, C.E., Cortés-Martín, A., Selma, M.V., Espín, J.C., Nascimento-Goncalves, E., Moreira-Pais, A., Neuparth, M.J., Peixoto, F., Rosa, E., Gama, A., Ferreira, R., Oliveira, P.A. and Faustino-Rocha, A.I. (2022) An Integrative Approach to Characterize the Early Phases of Dimethylhydrazine-Induced Colorectal Carcinogenesis in the Rat. Biomedicines, 10, Article No. 409.
https://doi.org/10.3390%2Fbiomedicines10020409
[10]  Tsounis, D., Villiotou, V., Melpidou, A., Pantsiou, C., Argyrou, A., Giannopoulou, C., Grigoratou, A., Rontogianni, D., Mantzaris, G.J. and Papatheodoridis, G. (2022) Oxidative Imbalance Increases the Risk for Colonic Polyp and Colorectal Cancer Development. World Journal of Gastrointestinal Oncology, 14, 2208-2223.
https://doi.org/10.4251/wjgo.v14.i11.2208
[11]  Ribeiro, C.C.D., Silva, R.M., Campanholo, V.M.L.P., Ribeiro, D.A., Ribeiro Paiotti, A.P. and Forones, N.M. (2018) Effects of Grape Juice in Superoxide Dismutase and Catalase in Colorectal Cancer Carcinogenesis Induced by Azoxymethane. Asian Pacific Journal of Cancer Prevention, 19, 2839-2844.
https://doi.org/10.22034/apjcp.2018.19.10.2839
[12]  Dharshini, L.C.P., Rasmi, R.R., Kathirvelan, C., Kumar, K.M., Saradhadevi, K.M. and Sakthivel, K.M. (2022) Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Applied Biochemistry and Biotechnology, 195, 2893-2916.
https://doi.org/10.1007/s12010-022-04266-z
[13]  Moaty, M.N., El Ashry, E.S.H., Awad, L.F., Mostafa, A., Abu-serie, M.M. and Teleb, M. (2022) Harnessing ROS-Induced Oxidative Stress for Halting Colorectal Cancer via Thiazolidinedione-Based SOD Inhibitors. ACS Omega, 7, 21267-21279.
https://doi.org/10.1021%2Facsomega.2c02410
[14]  Srinivas, U.S., Tan, B.W.Q., Vellayappan, B.A. and Jeyasekharan, A.D. (2019) ROS and the DNA Damage Response in Cancer. Redox Biology, 25, Article ID: 101084.
https://doi.org/10.1016/j.redox.2018.101084
[15]  Ying, J., Yang, L., Yin, J.C., Xia, G., Xing, M., Chen, X., Pang, J., Wu, Y., Bao, H., Wu, X., Shao, Y., Zhu, L. and Cheng, X. (2021) Additive Effects of Variants of Unknown Significance in Replication Repair-Associated DNA Polymerase Genes on Mutational Burden and Prognosis across Diverse Cancers. The Journal for ImmunoTherapy of Cancer, 9, e002336.
https://doi.org/10.1136/jitc-2021-002336
[16]  Nogacka, A.M., Gómez-Martín, M., Suárez, A., González-Bernardo, O., de Los Reyes-Gavilán, C.G. and González, S. (2019) Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. International Journal of Molecular Sciences, 20, Article No. 2051.
https://doi.org/10.3390/ijms20082051
[17]  Koklesova, L., Liskova, A., Samec, M., Qaradakhi, T., Zulli, A., Smejkal, K., Kajo, K., Jakubikova, J., Behzadi, P., Pec, M., Zubor, P., Biringer, K., Kwon, T.K., Büsselberg, D., Sarria, G.R., Giordano, F.A., Golubnitschaja, O. and Kubatka, P. (2020) Genoprotective Activities of Plant Natural Substances in Cancer and Chemopreventive Strategies in the Context of 3P Medicine. EPMA Journal, 11, 261-287.
https://doi.org/10.1007/s13167-020-00210-5
[18]  FIB-Food Ingredients Brasil No 47—2019.
https://revista-fi.com.br/artigos/gomas/gomas-xantana-gelana-carragena-e-outras
[19]  Kaddam, L., Fadl-Elmula, I., Eisawi, O.A., Abdelrazig, H.A., Salih, M.A., Lang, F. and Saeed, A.M. (2017) Gum Arabic as Novel Anti-Oxidant Agent in Sickle Cell Anemia, Phase II Trial. BMC Hematology, 17, Article No. 4.
https://doi.org/10.1186/s12878-017-0075-y
[20]  Braga, V.N.L., Juanes, C.C., Peres Júnior, H.S., Sousa, J.R., Cavalcanti, B.C., Jamacaru, F.V.F. Lemos, T.L.G. and Dornelas, C.A. (2019) Gum Arabic and Red Propolis Protecteting Colorectal Preneoplastic Lesions in a Rat Model of Azoxymethane. Acta Cirúrgica Brasileira, 34, e201900207.
https://doi.org/10.1590/s0102-8650201900207
[21]  Avelino, A.L.N., Silva, N.V.R.E., Oliveira, G.B., Silva, A.A.S., Cavalcanti, B.C., Jamacaru, F.V.F. and Dornelas, C.A. (2021) Antioxidant and Antigenotoxic Actions of Gum Arabic on the Intestinal Mucosa, Liver and Bone Marrow of Swiss Mice Submitted to Colorectal Carcinogenesis. Nutrition and Cancer, 74, 956-964.
https://doi.org/10.1080/01635581.2021.1931699
[22]  NCBI National Center for Biotechnology Information (2020) PubChem Compound Summary for CID 3314, Eugenol.
[23]  Nejad, S.M., Ozgünes, H. and Basaran, N. (2017) Pharmacological and Toxicological Properties of Eugenol. Turkish Journal of Pharmaceutical Sciences, 14, 201-206.
https://doi.org/10.4274/tjps.62207
[24]  Khalilzadeh, E., Hazrati, R. and Saiah, G.V. (2016) Effects of Topical and Systemic Administration of Eugenia caryophyllata Buds Essential Oil on Corneal Anesthesia and Analgesia. Research in Pharmaceutical Sciences, 11, 293-302.
https://doi.org/10.4103/1735-5362.189297
[25]  Taher, Y.A., Samud, A.M., El-Taher, F.E., Ben-Hussin, G., Elmezogi, J.S., Al-Mehdawi, B.F. and Salem, H.A. (2015) Experimental Evaluation of Anti-Inflammatory, Antinociceptive and Antipyretic Activities of Clove Oil in Mice. Libyan Journal of Medicine, 10, Article No. 28685.
https://doi.org/10.3402/ljm.v10.28685
[26]  Lane, T., Anantpadma, M., Freundlich, J.S., Davey, R.A., Madrid, P.B. and Ekins, S. (2019) The Natural Product Eugenol Is an Inhibitor of the Ebola Virus in Vitro. Pharmaceutical Research, 36, Article No. 104.
https://doi.org/10.1007/s11095-019-2629-0
[27]  Lou, Z., Letsididi, K.S., Yu, F., Pei, Z., Wang, H. and Letsididi, R. (2019) Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. Journal of Food Protection, 82, 379-389.
https://doi.org/10.4315/0362-028x.jfp-18-196
[28]  Akdemir, F.N.E., Yildirim, S., Kandemir, F.M., Aksu, E.H., Guler, M.C., Kiziltunc Ozmen, H., Kucukler, S. and Eser, G. (2019) The Antiapoptotic and Antioxidant Effects of Eugenol against Cisplatin-Induced Testicular Damage in the Experimental Model. Andrologia, 51, e13353.
https://doi.org/10.1111/and.13353
[29]  Cui, Z., Liu, Z., Zeng, J., Chen, L., Wu, Q., Mo, J., Zhang, G., Song, L., Xu, W., Zhang, S. and Guo, X. (2019) Eugenol Inhibits Non-Small Cell Lung Cancer by Repressing Expression of NF-κB-Regulated TRIM59. Phytotherapy Research, 33, 1562-1569.
https://doi.org/10.1002/ptr.6352
[30]  Abdullah, M.L., Hafez, M.M., Al-Hoshani, A. and Al-Shabanah, O. (2018) Anti-Metastatic and Anti-Proliferative Activity of Eugenol against Triple Negative and HER2 Positive Breast Cancer Cells. BMC Complementary and Alternative Medicine, 18, Article No. 321.
https://doi.org/10.1186/s12906-018-2392-5
[31]  Manikandan, P., Murugan, R.S., Priyadarsini, R.V., Vinothini, G. and Nagini, S. (2010) Eugenol Induces Apoptosis and Inhibits Invasion and Angiogenesis in a Rat Model of Gastric Carcinogenesis Induced by MNNG. Life Sciences, 86, 936-941.
https://doi.org/10.1016/j.lfs.2010.04.010
[32]  Nasir, O., Wang, K., Foller, M., Bhandaru, M., Sandulache, D., Artunc, F., Ackermann, T.F., Ebrahim, A., Palmada, M., Klingel, K., Saeed, A.M. and Lang, F. (2010) Downregulation of Angiogenin Transcript Levels and Inhibition of Colonic Carcinoma by Gum Arabic (Acacia senegal). Nutrition and Cancer, 62, 802-810.
https://doi.org/10.1080/01635581003605920
[33]  Larangeira, L.L.S., Taha, M.O., Ferme, A., Lemos, R. and Plaper, H. (1998) Localizacao de lesoes tumorais induzidas pela 1,2-dimetilhidrazina e seu grau de atipia no colon de ratos. Acta Cirúrgica Brasileira, 13.
https://doi.org/10.1590/S0102-86501998000300008
[34]  Ravnik-Glavac, M., Cerar, A. and Glavac, D. (2000) Animal Model in the Study of Colorectal Carcinogenesis. Pflügers Archiv, 440, R55-R57.
https://doi.org/10.1007/s004240000005
[35]  Bartosz, G. (2006) Use of Spectroscopic Probes for Detection of Reactive Oxygen Species. Clinica Chimica Acta, 368, 53-76.
https://doi.org/10.1016/j.cca.2005.12.039
[36]  Akerboom, T.P.M. and Sies, H. (1981) Assay of Glutathione, Glutathione Disulfide, and Glutathione Mixed Disulfides in Biological Samples. Methods in Enzymology, 77, 373-382.
https://doi.org/10.1016/S0076-6879(81)77050-2
[37]  Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265-275.
https://doi.org/10.1016/S0021-9258(19)52451-6
[38]  Smith, C.C., O’Donovan, M.R. and Martin, E. (2006) hOGG1 Recognizes Oxidative Damage Using the Comet Assay with Greater Specificity than FPG or ENDOIII. Mutagenesis, 21, 185-190.
https://doi.org/10.1093/mutage/gel019
[39]  Nuffer, W., Tall Bull, S., Bakhach, H. and Nuffer, M. (2023) Sweetly Improving Sugars? Reviewing Cinnamon’s Effects on Blood Glucose. Journal of Medicinal Food, 26, 68-73.
https://doi.org/10.1089/jmf.2022.0073
[40]  Crowe-White, K.M., Jung, S.E., Bragg, A. and Senkus, K.E. (2023) Functional Sugar-Free Chewing Gum Infused with Spices Bolsters Antioxidant Capacity and Phenolic Content of Saliva. Scientific Reports, 13, Article No. 4802.
https://doi.org/10.1038/s41598-023-30931-2
[41]  Angelopoulou, E., Paudel, Y.N., Papageorgiou, S.G. and Piperi, C. (2022) Elucidating the Beneficial Effects of Ginger (Zingiber officinale Roscoe) in Parkinson’s Disease. ACS Pharmacology & Translational Science, 5, 838-848.
https://doi.org/10.1021/acsptsci.2c00104
[42]  Nath, M. and Debnath, P. (2022) Therapeutic Role of Traditionally Used Indian Medicinal Plants and Spices in Combating COVID-19 Pandemic Situation. Journal of Biomolecular Structure and Dynamics, 41, 5894-5913.
https://doi.org/10.1080/07391102.2022.2093793
[43]  Singh, N. and Yadav, S.S. (2022) Ethnomedicinal Uses of Indian Spices Used for Cancer Treatment: A Treatise on Structure-Activity Relationship and Signaling Pathways. Current Research in Food Science, 5, 1845-1872.
https://doi.org/10.1016/j.crfs.2022.10.005
[44]  Xue, Q., Xiang, Z., Wang, S., Cong, Z., Gao, P. and Liu, X. (2022) Recent Advances in Nutritional Composition, Phytochemistry, Bioactive, and Potential Applications of Syzygium aromaticum L. (Myrtaceae). Frontiers in Nutrition, 9, Article ID: 1002147.
https://doi.org/10.3389/fnut.2022.1002147
[45]  Haro-González, J.N., Castillo-Herrera, G.A., Martínez-Velázquez, M. and Espinosa-Andrews, H. (2021) Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules, 26, Article No. 6387.
https://doi.org/10.3390/molecules26216387
[46]  Batiha, G.E., Alkazmi, L.M., Wasef, L.G., Beshbishy, A.M., Nadwa, E.H. and Rashwan, E.K. (2020) Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules, 10, Article No. 202.
https://doi.org/10.3390/biom10020202
[47]  Pandey, V.K., Shams, R., Singh, R., Dar, A.H., Pandiselvam, R., Rusu, A.V. and Trif, M. (2022) A Comprehensive Review on Clove (Caryophyllus aromaticus L.) Essential Oil and Its Significance in the Formulation of Edible Coatings for Potential Food Applications. Frontiers in Nutrition, 9, Article ID: 987674.
https://doi.org/10.3389/fnut.2022.987674
[48]  Pizzo, J.S., Visentainer, J.V., Da Silva, A.L.B.R. and Rodrigues, C. (2023) Application of Essential Oils as Sanitizer Alternatives on the Postharvest Washing of Fresh Produce. Food Chemistry, 407, Article ID: 135101.
https://doi.org/10.1016/j.foodchem.2022.135101
[49]  Wlodarska, M., Willing, B.P., Bravo, D.M. and Finlay, B.B. (2015) Phytonutrient Diet Supplementation Promotes Beneficial Clostridia Species and Intestinal Mucus Secretion Resulting in Protection against Enteric Infection. Scientific Reports, 5, Article No. 9253.
https://doi.org/10.1038/srep09253
[50]  Rodrigues, M., BertoncinI-Silva, C., Joaquim, A.G., Machado, C.D., Ramalho, L.N.Z., Carlos, D., Fassini, P.G. and Suen, V.M.M. (2022) Beneficial Effects of Eugenol Supplementation on Gut Microbiota and Hepatic Steatosis in High-Fat-Fed Mice. Food & Function, 13, 3381-3390.
https://doi.org/10.1039/D1FO03619J
[51]  Calame, W., Weseler, A.R., Viebke, C., Flynn, C. and Siemensma, A.D. (2008) Gum Arabic Establishes Prebiotic Functionality in Healthy Human Volunteers in a Dose-Dependent Manner. British Journal of Nutrition, 100, 1269-1275.
https://doi.org/10.1017/s0007114508981447
[52]  Amaral, L.A., da Silva Fleming de Almeida, T., Oliveira de Souza, G.H., Baranoski, A., Souza Maris, R., Bittencourt Junior, F.F., Murino Rafacho, B.P., Duenhas Monreal, A.C., Leite Kassuya, C.A., Milan Brochado Antoniolli-Silva, A.C., Freitas Dos Santos, E. and Oliveira, R.J. (2021) The Use of Natural Fiber-Rich Food Product Is Safe and Reduces Aberrant Crypt Foci in a Pre-Clinical Model. Nutrients, 13, Article No. 2708.
https://doi.org/10.3390/nu13082708
[53]  Venkatachalam, K., Vinayagam, R., Arokia Vijaya Anand, M., Isa, N.M. and Ponnaiyan, R. (2020) Biochemical and Molecular Aspects of 1,2-Dimethylhydrazine (DMH)-Induced Colon Carcinogenesis: A Review. Toxicological Research (Camb), 9, 2-18.
https://doi.org/10.1093/toxres/tfaa004
[54]  Lannagan, T.R., Jackstadt, R., Leedham, S.J. and Sansom, O.J. (2021) Advances in Colon Cancer Research: In Vitro and Animal Models. Current Opinion in Genetics & Development, 66, 50-56.
https://doi.org/10.1016/j.gde.2020.12.003
[55]  Wang, Y., Qi, H., Liu, Y., Duan, C., Liu, X., Xia, T., Chen, D., Piao, H.L. and Liu, H.X. (2021) The Double-Edged Roles of ROS in Cancer Prevention and Therapy. Theranostics, 11, 4839-4857.
https://doi.org/10.7150/thno.56747
[56]  Wu, K., Zhou, Q. and Ouyang, S. (2021) Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA—A Review. Nanomaterials (Basel), 11, Article No. 2889.
https://doi.org/10.3390/nano11112889
[57]  Hrycay, E.G. and Bandiera, S.M. (2015) Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Advances in Pharmacology, 74, 35-84.
https://doi.org/10.1016/bs.apha.2015.03.003
[58]  Bucher, J.R. (2019) Chapter 15. Oxidative Stress and Radical-Induced Signalling. In: Baan, R.A., Stewart, B.W. and Straif, K., Eds., Tumour Site Concordance and Mechanisms of Carcinogenesis, International Agency for Research on Cancer, Lyon, 153-157.
[59]  Li, W., Li, M. and Qi, J. (2021) Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules, 26, Article No. 5567.
https://doi.org/10.3390/molecules26185567
[60]  Hobbs, C.A., Recio, L., Streicker, M., Boyle, M.H., Tanaka, J., Shiga, A. and Witt, K.L. (2015) Comet Assay Evaluation of Six Chemicals of Known Genotoxic Potential in Rats. Genetic Toxicology and Environmental Mutagenesis, 786-788, 172-181.
https://doi.org/10.1016%2Fj.mrgentox.2015.03.003
[61]  Cordelli, E., Bignami, M. and Pacchierotti, F. (2021) Comet Assay: A Versatile but Complex Tool in Genotoxicity Testing. Toxicological Research (Camb), 10, 68-78.
https://doi.org/10.1093/toxres/tfaa093
[62]  Muruzabal, D., Collins, A. and Azqueta, A. (2021) The Enzyme-Modified Comet Assay: Past, Present and Future. Food and Chemical Toxicology, 147, Article ID: 111865.
https://doi.org/10.1016/j.fct.2020.111865
[63]  Hassani, A., Mahmood, S., Enezei, H.H., Hussain, S.A., Hamad, H.A., Aldoghachi, A.F., Hagar, A., Doolaanea, A.A. and Ibrahim, W.N. (2020) Formulation, Characterization and Biological Activity Screening of Sodium Alginate-Gum Arabic Nanoparticles Loaded with Curcumin. Molecules, 25, Article No. 2244.
https://doi.org/10.3390/molecules25092244
[64]  Abu-Serie, M.M., Hamouda, A.F. and Habashy, N.H. (2021) Acacia senegal Gum Attenuates Systemic Toxicity in CCl4-Intoxicated Rats via Regulation of the ROS/NF-κB Signaling Pathway. Scientific Reports, 11, Article No. 20316.
https://doi.org/10.1038/s41598-021-99953-y
[65]  Ali, B.H., Al Za’abi, M., Al Suleimani, Y., Manoj, P., Ali, H., Ribeiro, D.A. and Nemmar, A. (2020) Gum Arabic Reduces Inflammation, Oxidative, and Nitrosative Stress in the Gastrointestinal Tract of Mice with Chronic Kidney Disease. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 1427-1436.
https://doi.org/10.1007/s00210-020-01844-y
[66]  Ahmed, N., El-Rayes, S.M., Khalil, W.F., Abdeen, A., Abdelkader, A., Youssef, M., Maher, Z.M., Ibrahim, A.N., Abdelrahman, S.M., Ibrahim, S.F., Abdelrahaman, D., Alsieni, M., Elserafy, O.S., Ghamry, H.I., Emam, H.T. and Shanab, O. (2022) Arabic Gum Could Alleviate the Aflatoxin B1-Provoked Hepatic Injury in Rat: The Involvement of Oxidative Stress, Inflammatory, and Apoptotic Pathways. Toxins (Basel), 14, Article No. 605.
https://doi.org/10.3390/toxins14090605
[67]  Eslick, S., Thompson, C., Berthon, B. and Wood, L. (2022) Short-Chain Fatty Acids as Anti-Inflammatory Agents in Overweight and Obesity: A Systematic Review and Meta-Analysis. Nutrition Reviews, 80, 838-856.
https://doi.org/10.1093/nutrit/nuab059
[68]  Aloqbi, A.A. (2020) Gum Arabic as a Natural Product with Antimicrobial and Anticancer Activities. Archives of Pharmacy Practice, 11, 107-112.
[69]  Aburel, O.M., Pavel, I.Z., Danila, M.D., Lelcu, T., Roi, A., Lighezan, R., Muntean, D.M. and Rusu, L.C. (2021) Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 3165159.
https://doi.org/10.1155/2021/3165159
[70]  Ghodousi-Dehnavi, E., Hosseini, R.H., Arjmand, M., Nasri, S. and Zamani, Z. (2021) A Metabolomic Investigation of Eugenol on Colorectal Cancer Cell Line HT-29 by Modifying the Expression of APC, p53, and KRAS Genes. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 1448206.
https://doi.org/10.1155/2021/1448206
[71]  Zari, A.T., Zari, T.A. and Hakeem, K.R. (2021) Anticancer Properties of Eugenol: A Review. Molecules, 26, Article No. 7407.
https://doi.org/10.3390%2Fmolecules26237407
[72]  Hussain, A., Brahmbhatt, K., Priyani, A., Ahmed, M., Rizvi, T.A. and Sharma, C. (2011) Eugenol Enhances the Chemotherapeutic Potential of Gemcitabine and Induces Anticarcinogenic and Anti-Inflammatory Activity in Human Cervical Cancer Cells. Cancer Biotherapy and Radiopharmaceuticals, 26, 519-527.
https://doi.org/10.1089/cbr.2010.0925
[73]  Bürtin, F., Mullins, C.S. and Linnebacher, M. (2020) Mouse Models of Colorectal Cancer: Past, Present and Future Perspectives. World Journal of Gastroenterology, 26, 1394-1426.
https://doi.org/10.3748/wjg.v26.i13.1394
[74]  Esmeeta, A., Adhikary, S., Dharshnaa, V., Swarnamughi, P., Ummul Maqsummiya, Z., Banerjee, A., Pathak, S. and Duttaroy, A.K. (2022) Plant-Derived Bioactive Compounds in Colon Cancer Treatment: An Updated Review. Biomedicine & Pharmacotherapy, 153, Article ID: 113384.
https://doi.org/10.1016/j.biopha.2022.113384
[75]  Barboza, J.N., da Silva Maia Bezerra Filho, C., Silva, R.O., Medeiros, J.V.R. and de Sousa, D.P. (2018) An Overview on the Anti-Inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 3957262.
https://doi.org/10.1155/2018/3957262
[76]  Caetano, B.F., Baptista Tablas, M., Ribeiro Romualdo, G., Marchesan Rodrigues, M.A. and Barbisan, L.F. (2020) Early Molecular Events Associated with Liver and Colon Sub-Acute Responses to 1,2-Dimethylhydrazine: Potential Implications on Preneoplastic and Neoplastic Lesion Development. Toxicology Letters, 329, 67-79.
https://doi.org/10.1016/j.toxlet.2020.04.009
[77]  Jiang, Y., Feng, C., Shi, Y., Kou, X. and Le, G. (2022) Eugenol Improves High-Fat Diet/Streptomycin-Induced Type 2 Diabetes Mellitus (T2DM) Mice Muscle Dysfunction by Alleviating Inflammation and Increasing Muscle Glucose Uptake. Frontiers in Nutrition, 8, Article ID: 1039753.
https://doi.org/10.3389/fnut.2022.1039753
[78]  Liu, W., Chen, G., Dou, K., Yi, B., Wang, D., Zhou, Q. and Sun, Y. (2023) Eugenol Eliminates Carbapenem-Resistant Klebsiella pneumoniae via Reactive Oxygen Species Mechanism. Frontiers in Microbiology, 14, Article ID: 1090787.
https://doi.org/10.3389/fmicb.2023.1090787
[79]  Helmy, H., Hamid Sadik, N.A., Badawy, L. and Sayed, N.H. (2022) Mechanistic Insights into the Protective Role of Eugenol against Stress-Induced Reproductive Dysfunction in Female Rat Model. Chemico-Biological Interactions, 367, Article ID: 110181.
https://doi.org/10.1016/j.cbi.2022.110181
[80]  Fathy, M., Abdel-Latif, R., Abdelgwad, Y.M., Othman, O.A., Abdel-Razik, A.H., Dandekar, T. and Othman, E.M. (2022) Nephroprotective Potential of Eugenol in a Rat Experimental Model of Chronic Kidney Injury; Targeting NOX, TGF-β, and Akt Signaling. Life Sciences, 308, Article ID: 120957.
https://doi.org/10.1016/j.lfs.2022.120957
[81]  Al-Jubori, Y., Ahmed, N.T.B., Albusaidi, R., Madden, J., Das, S. and Sirasanagandla, S.R. (2023) The Efficacy of Gum Arabic in Managing Diseases: A Systematic Review of Evidence-Based Clinical Trials. Biomolecules, 13, Article No. 138.
https://doi.org/10.3390/biom13010138
[82]  Gouda, E. and Babiker, F. (2022) Gum Arabic Protects the Rat Heart from Ischemia/Reperfusion Injury through Anti-Inflammatory and Antioxidant Pathways. Scientific Reports, 12, Article No. 17235.
https://doi.org/10.1038/s41598-022-22097-0

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133