全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heart Failure-Like Reaction Is Likely Involved in the Feeding Behaviour of Blood-Sucking Leeches

DOI: 10.4236/abb.2024.151004, PP. 52-69

Keywords: Blood-Sucking Leeches, Transcriptomic Analysis, Heart Failure, Feeding Behaviour

Full-Text   Cite this paper   Add to My Lib

Abstract:

Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between leech and host, the body transcriptomes of hunger and fed blood-sucking Poecilobdella javanica, Haemadipsa cavatuses, and Hirudo nipponia leeches were obtained by RNA sequencing, after comparison, a stratified unigenes group was obtained, which closely correlated to body distension. In the group, Rfamide receptor decreased significantly (P < 0.05) while serotonin receptor increased significantly (P < 0.05). Moreover, four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including cardiac muscle contraction, complement and coagulation cascades, renin-angiotensin system, and hypertrophic cardiomyopathy were significantly enriched. The unigenes annotation, neuroregulators correlation analysis and induced function of the KEGG pathways, were consistently supported the same result as: vasoconstriction and systole reaction enhance in hunger leeches and vice versa vasodilation and diastole increase in fed leeches, meanwhile, Interspecific comparison and correlative analyses of physiological function showed that the strongest reaction of induced heart failure from four KEGG occur in strongest reaction of systole in hungry P. javanica and in strongest reaction of diastole in fed H. nipponia. Overall, heart failure is likely a physiological function involved in feeding behaviour.

References

[1]  Ascenzi, P., Amiconi, G., Bode, W., Bolognesi, M., Coletta, M. and Menegatti, E. (1995) Proteinase Inhibitors from the European Medicinal Leech Hirudo medicinalis: Structural, Functional and Biomedical Aspects. Molecular Aspects of Medicine, 16, 215-313.
https://doi.org/10.1016/0098-2997(95)00002-x
[2]  Ju, L. (2004) French Leech Is Approved for FDA Medical License. China Journal of Chinese Materia Medica, 29, 1022-1023.
[3]  Zhang, W., Zhang, R., Li, J., Liang, F. and Qian, Z. (2013) Species Study on Chinese Medicine Leech and Discussion on Its Resource Sustainable Utilization. China Journal of Chinese Materia Medica, 38, 914-918.
[4]  Wang, D., Wang, B., Guo, Q., Yang, L. and Shen, F. (2009) The Importance of the Species and Fauna Studies on Hirudinea in Yunnan Province. Journal of Kunming University, 31, 49-51.
[5]  Yang, T. and Wang, D. (2009) A New Species of Cavernous Blood-Sucking Land Leech (Hirudinea, Haemadipsidae) in the West of Yunnan Province, China. Journal of Zoological Systematics and Evolutionary Research, 34, 125-129.
[6]  Sawyer, R.T. (1986) Leech Biology and Behaviour. Journal of Animal Ecology, 56, 720.
[7]  Wilson, R.J., Kristan, W.B. and Kleinhaus, A.L. (1996) An Increase in Activity of Serotonergic Retzius Neurones May Not Be Necessary for the Consummatory Phase of Feeding in the Leech Hirudo medicinalis. The Journal of Experimental Biology, 199, 1405-1414.
https://doi.org/10.1242/jeb.199.6.1405
[8]  Lent, C.M., Fliegner, K.H., Freedman, E. and Dickinson, M.H. (1988) Ingestive Behaviour and Physiology of the Medicinal Leech. The Journal of Experimental Biology, 137, 513-527.
https://doi.org/10.1242/jeb.137.1.513
[9]  Claflin, S.B., Pien, C.L., Rangel, E.N., Utz, K.E., Walther, H.V., Wright, A.N. and Ellerby, D.J. (2009) Effects of Feeding on Medicinal Leech Swimming Performance. Proceedings of the Zoological Society of London, 277, 241-247.
[10]  Wilson, R.J., Skierczynski, B.A., Meyer, J.K., Skalak, R. and Kristan, W.B. (1996) Mapping Motor Neuron Activity to Overt Behavior in the Leech. I. Passive Biomechanical Properties of the Body Wall. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 178, 637-654.
https://doi.org/10.1007/BF00227377
[11]  Silver, A. and Graf, J. (2011) Innate and Procured Immunity inside the Digestive Tract of the Medicinal Leech. Invertebrate Survival Journal: ISJ, 8, 173-178.
[12]  Gaudry, Q. and Kristan, W.B. (2010) Feeding-Mediated Distention Inhibits Swimming in the Medicinal Leech. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 9753-9761.
https://doi.org/10.1523/JNEUROSCI.1487-10.2010
[13]  Gerry, S.P., Daigle, A.J., Feilich, K.L., Liao, J., Oston, A.L. and Ellerby, D.J. (2012) Serotonin as an Integrator of Leech Behavior and Muscle Mechanical Performance. Zoology (Jena, Germany), 115, 255-260.
https://doi.org/10.1016/j.zool.2012.02.001
[14]  Macagno, E.R., Gaasterland, T., Edsall, L., Bafna, V., Soares, M.B., Scheetz, T., Casavant, T., Da Silva, C., Wincker, P., Tasiemski, A. and Salzet, M. (2010) Construction of a Medicinal Leech Transcriptome Database and Its Application to the Identification of Leech Homologs of Neural and Innate Immune Genes. BMC Genomics, 11, Article No. 407.
https://doi.org/10.1186/1471-2164-11-407
[15]  Min, G.S., Sarkar, I.N. and Siddall, M.E. (2010) Salivary Transcriptome of the North American Medicinal Leech, Macrobdella decora. The Journal of Parasitology, 96, 1211-1221.
https://doi.org/10.1645/GE-2496.1
[16]  Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and Regev, A. (2011) Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nature Biotechnology, 29, 644-652.
https://doi.org/10.1038/nbt.1883
[17]  Ruffalo, M., LaFramboise, T. and Koyutürk, M. (2011) Comparative Analysis of Algorithms for Next-Generation Sequencing Read Alignment. Bioinformatics (Oxford, England), 27, 2790-2796.
https://doi.org/10.1093/bioinformatics/btr477
[18]  Li, B. and Dewey, C.N. (2011) RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinformatics, 12, Article No. 323.
https://doi.org/10.1186/1471-2105-12-323
[19]  Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq. Nature Methods, 5, 621-628.
https://doi.org/10.1038/nmeth.1226
[20]  Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.I., Smits, B.M., Haag, J.D., Gould, M.N., Stewart, R.M. and Kendziorski, C. (2013) EBSeq: An Empirical Bayes Hierarchical Model for Inference in RNA-seq Experiments. Bioinformatics (Oxford, England), 29, 1035-1043.
https://doi.org/10.1093/bioinformatics/btt087
[21]  Wesolowski, S., Birtwistle, M.R. and Rempala, G.A. (2013) A Comparison of Methods for RNA-Seq Differential Expression Analysis and a New Empirical Bayes Approach. Biosensors, 3, 238-258.
https://doi.org/10.3390/bios3030238
[22]  Ferreira, J.A. (2007) The Benjamini-Hochberg Method in the Case of Discrete Test Statistics. The International Journal of Biostatistics, 3, Article No. 11.
https://doi.org/10.2202/1557-4679.1065
[23]  Walker, R.J., Holden-Dye, L. and Franks, C.J. (1993) Physiological and Pharmacological Studies on Annelid and Nematode Body Wall Muscle. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 106, 49-58.
https://doi.org/10.1016/0742-8413(93)90253-h
[24]  Werner, C.M. and Böhm, M. (2008) The Therapeutic Role of RAS Blockade in Chronic Heart Failure. Therapeutic Advances in Cardiovascular Disease, 2, 167-177.
https://doi.org/10.1177/1753944708091777
[25]  Chen, P., Guo, L.H., Guo, Y.K., Qu, Z.J., Gao, Y. and Qiu, H. (2016) Identification of Disturbed Pathways in Heart Failure Based on Gibbs Sampling and Pathway Enrichment Analysis. Genetics and Molecular Research: GMR, 15, gmr.15027956.
https://doi.org/10.4238/gmr.15027956
[26]  Ahmed, A., Fonarow, G.C., Zhang, Y., Sanders, P.W., Allman, R.M., Arnett, D.K., Feller, M.A., Love, T.E., Aban, I.B., Levesque, R., Ekundayo, O.J., Dell’Italia, L.J., Bakris, G.L. and Rich, M.W. (2012) Renin-Angiotensin Inhibition in Systolic Heart Failure and Chronic Kidney Disease. The American Journal of Medicine, 125, 399-410.
https://doi.org/10.1016/j.amjmed.2011.10.013
[27]  Franssen, C.F. and Navis, G. (2013) Chronic Kidney Disease: RAAS Blockade and Diastolic Heart Failure in Chronic Kidney Disease. Nature Reviews. Nephrology, 9, 190-192.
https://doi.org/10.1038/nrneph.2013.39
[28]  Ker, J. (2015) Heart Failure: ACE and RAAS: Cardiac Focus. Medical Chronicle, 2015.
https://journals.co.za/doi/abs/10.10520/EJC178442
[29]  Mohamed, T.M.A., Ang, Y.S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., Foley, A., Magnitsky, S. and Srivastava, D. (2018) Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell, 173, 104-116.e12.
https://doi.org/10.1016/j.cell.2018.02.014
[30]  Britto, J.M., Lukehurst, S., Weller, R., Fraser, C., Qiu, Y., Hertzog, P. and Busfield, S.J. (2004) Generation and Characterization of Neuregulin-2-Deficient Mice. Molecular and Cellular Biology, 24, 8221-8226.
https://doi.org/10.1128/MCB.24.18.8221-8226.2004
[31]  Li, J., Gao, E., Vite, A., Yi, R., Gomez, L., Goossens, S., van Roy, F. and Radice, G.L. (2015) Alpha-Catenins Control Cardiomyocyte Proliferation by Regulating Yap Activity. Circulation Research, 116, 70-79.
https://doi.org/10.1161/CIRCRESAHA.116.304472
[32]  Li, L., Zhao, Q. and Kong, W. (2018) Extracellular Matrix Remodeling and Cardiac Fibrosis. Matrix Biology: Journal of the International Society for Matrix Biology, 68-69, 490-506.
https://doi.org/10.1016/j.matbio.2018.01.013

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133