Dust deposition on the surface of photovoltaic (PV) cells poses a
significant challenge to their efficiency, especially in arid regions
characterized by desert and semi-desert conditions. Despite the pronounced
impact of dust accumulation, these regions offer optimal solar radiation and minimal
cloud cover, making them ideal candidates for widespread PV cell deployment.
Various surface cleaning methods exist, each employing distinct approaches.
Choosing an appropriate cleaning method requires a comprehensive understanding
of the mechanisms involved in both dust deposition on module surfaces and dust
adhesion to PV cell surfaces. The mechanisms governing dust deposition and
adhesion are complex and multifaceted, influenced by factors such as the nature
and properties of the dust particles, environmental climatic conditions,
characteristics of protective coatings, and the specific location of the PV
installation. These factors exhibit regional variations, necessitating the
implementation of diverse cleaning approaches tailored to the unique conditions
of each location. The first part of this article explores the factors
influencing dust deposition on PV cell surfaces, delving into the intricate
interplay of environmental variables and particle characteristics.
Subsequently, the second part addresses various cleaning methods, offering an
analysis of their respective advantages and disadvantages. By comprehensively
examining the factors influencing dust accumulation and evaluating the
effectiveness of different cleaning strategies, this article aims to contribute
valuable insights to the ongoing efforts to optimize the performance and
longevity of photovoltaic systems in diverse geographical contexts.
References
[1]
Aljdaeh, E., et al. (2021) Performance Enhancement of Self-Cleaning Hydrophobic Nanocoated Photovoltaic Panels in a Dusty Environment. Energies, 14, Article 6800. https://doi.org/10.3390/en14206800
[2]
Khadka, N., Bista, A., Adhikari, B., Shrestha, A. and Bista, D. (2020) Smart Solar Photovoltaic Panel Cleaning System. IOP Conference Series: Earth and Environmental Science, 463, Article ID: 012121. https://doi.org/10.1088/1755-1315/463/1/012121
[3]
Dave, J. (2023) European Electricity Review 2023. EMBER. https://ember-climate.org/insights/research/european-electricity-review-2023/
[4]
Jaswal, A. and Sinha, M.K. (2021) A Review on Solar Panel Cleaning through Chemical Self-Cleaning Method. In: Singari, R.M., Mathiyazhagan, K. and Kumar, H., Eds., Advances in Manufacturing and Industrial Engineering, Springer, Singapore, 835-844. https://doi.org/10.1007/978-981-15-8542-5_73
[5]
Sayyah, A., Horenstein, M.N. and Mazumder, M.K. (2014) Energy Yield Loss Caused by Dust Deposition on Photovoltaic Panels. Solar Energy, 107, 576-604. https://doi.org/10.1016/j.solener.2014.05.030
[6]
Jiang, H., Yang, Y., Wang, H., Bai, Y. and Bai, Y. (2020) Surface Diffuse Solar Radiation Determined by Reanalysis and Satellite over East Asia: Evaluation and Comparison. Remote Sensing, 12, Article 1387. https://doi.org/10.3390/rs12091387
[7]
Tzoumanikas, P., Nikitidou, E., Bais, A.F. and Kazantzidis, A. (2016) The Effect of Clouds on Surface Solar Irradiance, Based on Data from an All-Sky Imaging System. Renewable Energy, 95, 314-322. https://doi.org/10.1016/j.renene.2016.04.026
[8]
Kurokawa, K. (2012) Energy from the Desert. Routledge, London. https://doi.org/10.4324/9781849771139
[9]
Güney, T. (2022) Solar Energy, Governance and CO2 Emissions. Renewable Energy, 184, 791-798. https://doi.org/10.1016/j.renene.2021.11.124
[10]
Mani, M. and Pillai, R. (2010) Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations. Renewable and Sustainable Energy Reviews, 14, 3124-3131. https://doi.org/10.1016/j.rser.2010.07.065
[11]
Javed, W., Wubulikasimu, Y., Figgis, B. and Guo, B. (2017) Characterization of Dust Accumulated on Photovoltaic Panels in Doha, Qatar. Solar Energy, 142, 123-135. https://doi.org/10.1016/j.solener.2016.11.053
[12]
Garg, H.P. (1974) Effect of Dirt on Transparent Covers in Flat-Plate Solar Energy Collectors. Solar Energy, 15, 299-302. https://doi.org/10.1016/0038-092X(74)90019-X
[13]
Abdeen, E., Orabi, M. and Hasaneen, E.S. (2017) Optimum Tilt Angle for Photovoltaic System in Desert Environment. Solar Energy, 155, 267-280. https://doi.org/10.1016/j.solener.2017.06.031
[14]
Saadatmand, M., Gharehpetian, G.B., Moghassemi, A., Guerrero, J.M., Siano, P. and Alhelou, H.H. (2021) Damping of Low-Frequency Oscillations in Power Systems by Large-Scale PV Farms: A Comprehensive Review of Control Methods. IEEE Access, 9, 72183-72206. https://doi.org/10.1109/ACCESS.2021.3078570
[15]
Jalili Jamshidian, F., Gorjian, S. and Far, M. (2018) An Overview of Solar Thermal Power Generation Systems. Journal of Solar Energy Research, 3, 301-312.
[16]
Remini, B. (2020) Impressionnant, De La Poussiere Du Sahara Dans Le Ciel Du Continent D’Amerique Godzilla, la plus grande tempête de poussière depuis un demi-siècle [Awesome, the Dust of the Sahara in the Sky of the America Continent Godzilla, the Biggest Dust Storm in Half a Century]. LARHYSS Journal, 17, 97-125.
[17]
Burger, S.P., Jenkins, J.D., Huntington, S.C. and Perez-Arriaga, I.J. (2019) Why Distributed? A Critical Review of the Tradeoffs between Centralized and Decentralized Resources. IEEE Power and Energy Magazine, 17, 16-24. https://doi.org/10.1109/MPE.2018.2885203
[18]
Darwish, Z.A., Kazem, H.A., Sopian, K., Al-Goul, M.A. and Alawadhi, H. (2015) Effect of Dust Pollutant Type on Photovoltaic Performance. Renewable and Sustainable Energy Reviews, 41, 735-744. https://doi.org/10.1016/j.rser.2014.08.068
[19]
Adebiyi, A., et al. (2023) A Review of Coarse Mineral Dust in the Earth System. Aeolian Research, 60, Article ID: 100849. https://doi.org/10.1016/j.aeolia.2022.100849
[20]
Chanchangi, Y.N., Ghosh, A., Sundaram, S. and Mallick, T.K. (2020) An Analytical Indoor Experimental Study on the Effect of Soiling on PV, Focusing on Dust Properties and PV Surface Material. Solar Energy, 203, 46-68. https://doi.org/10.1016/j.solener.2020.03.089
[21]
Wu, Y., et al. (2022) A Review of Self-Cleaning Technology to Reduce Dust and Ice Accumulation in Photovoltaic Power Generation Using Superhydrophobic Coating. Renewable Energy, 185, 1034-1061. https://doi.org/10.1016/j.renene.2021.12.123
[22]
Almukhtar, H., Lie, T.T., Al-Shohani, W.A.M., Anderson, T. and Al-Tameemi, Z. (2023) Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques. Energies, 16, Article 3401. https://doi.org/10.3390/en16083401
[23]
Figgis, B., Ennaoui, A., Ahzi, S. and Rémond, Y. (2017) Review of PV Soiling Particle Mechanics in Desert Environments. Renewable and Sustainable Energy Reviews, 76, 872-881. https://doi.org/10.1016/j.rser.2017.03.100
[24]
Guan, Y., Zhang, H., Xiao, B., Zhou, Z. and Yan, X. (2017) In-Situ Investigation of the Effect of Dust Deposition on the Performance of Polycrystalline Silicon Photovoltaic Modules. Renewable Energy, 101, 1273-1284. https://doi.org/10.1016/j.renene.2016.10.009
[25]
Alnasser, T.M.A., Mahdy, A.M.J., Abass, K.I., Chaichan, M.T. and Kazem, H.A. (2020) Impact of Dust Ingredient on Photovoltaic Performance: An Experimental Study. Solar Energy, 195, 651-659. https://doi.org/10.1016/j.solener.2019.12.008
[26]
Müller, T., Schladitz, A., Massling, A., Kaaden, N., Kandler, K. and Wiedensohler, A. (2009) Spectral Absorption Coefficients and Imaginary Parts of Refractive Indices of Saharan Dust during SAMUM-1. Tellus B: Chemical and Physical Meteorology, 61, 79-95. https://doi.org/10.1111/j.1600-0889.2008.00399.x
[27]
Chever, L., Pavía, S. and Howard, R. (2020) Physical Properties of Magnesian Lime Mortars. Materials and Structures, 43, 283-296. https://doi.org/10.1617/s11527-009-9488-9
[28]
Linke, C., et al. (2006) Optical Properties and Mineralogical Composition of Different Saharan Mineral Dust Samples: A Laboratory Study. Atmospheric Chemistry and Physics, 6, 3315-3323. https://doi.org/10.5194/acp-6-3315-2006
[29]
Adıgüzel, E., Subaşı, N., Mumcu, T.V. and Ersoy, A. (2023) The Effect of the Marble Dust to the Efficiency of Photovoltaic Panels Efficiency by SVM. Energy Reports, 9, 66-76. https://doi.org/10.1016/j.egyr.2022.10.358
[30]
Kazem, H.A. and Chaichan, M.T. (2016) Experimental Analysis of the Effect of Dust’s Physical Properties on Photovoltaic Modules in Northern Oman. Solar Energy, 139, 68-80. https://doi.org/10.1016/j.solener.2016.09.019
[31]
Li, X.C. and Niu, K. (2018) Effectively Predict the Solar Radiation Transmittance of Dusty Photovoltaic Panels through Lambert-Beer Law. Renewable Energy, 123, 634-638. https://doi.org/10.1016/j.renene.2018.02.046
[32]
Wu, Z., Yan, S., Ming, T., Zhao, X. and Zhang, N. (2021) Analysis and Modeling of Dust Accumulation-Composed Spherical and Cubic Particles on PV Module Relative Transmittance. Sustainable Energy Technologies and Assessments, 44, Article ID: 101015. https://doi.org/10.1016/j.seta.2021.101015
[33]
Boyle, L., Flinchpaugh, H. and Hannigan, M.P. (2015) Natural Soiling of Photovoltaic Cover Plates and the Impact on Transmission. Renewable Energy, 77, 166-173. https://doi.org/10.1016/j.renene.2014.12.006
[34]
Hachicha, A.A., Al-Sawafta, I. and Ben Hamadou, D. (2019) Numerical and Experimental Investigations of Dust Effect on CSP Performance under United Arab Emirates Weather Conditions. Renewable Energy, 143, 263-276. https://doi.org/10.1016/j.renene.2019.04.144
[35]
Al-Ahmed, A., Inamuddin, Al-Sulaiman, F.A. and Khan, F. (2022) The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-84635-0
[36]
Santiago, I., Trillo-Montero, D., Moreno-Garcia, I.M., Pallarés-López, V. and Luna-Rodríguez, J.J. (2018) Modeling of Photovoltaic Cell Temperature Losses: A Review and a Practice Case in South Spain. Renew. Sustain. Renewable and Sustainable Energy Reviews, 90, 70-89. https://doi.org/10.1016/j.rser.2018.03.054
[37]
Skoplaki, E., Boudouvis, A.G. and Palyvos, J.A. (2008) A Simple Correlation for the Operating Temperature of Photovoltaic Modules of Arbitrary Mounting. Solar Energy Materials and Solar Cells, 92, 1393-1402. https://doi.org/10.1016/j.solmat.2008.05.016
[38]
Skoplaki, E. and Palyvos, J.A. (2009) Operating Temperature of Photovoltaic Modules: A Survey of Pertinent Correlations. Renewable Energy, 34, 23-29. https://doi.org/10.1016/j.renene.2008.04.009
[39]
Skoplaki, E. and Palyvos, J.A. (2009) On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Solar Energy, 83, 614-624. https://doi.org/10.1016/j.solener.2008.10.008
[40]
Del Cueto, J.A. (2002) Comparison of Energy Production and Performance from Flat-Plate Photovoltaic Module Technologies Deployed at Fixed Tilt. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference 2002, New Orleans, 19-24 May 2002, 1523-1526. https://doi.org/10.1109/PVSC.2002.1190901
[41]
Bardhi, M., Grandi, G. and Tina, G. (2012) Comparison of PV Cell Temperature Estimation by Different Thermal Power Exchange Calculation Methods. Renewable Energy and Power Quality Journal, 1, 653-658. https://doi.org/10.24084/repqj10.417
[42]
Notton, G., Cristofari, C., Mattei, M. and Poggi, P. (2005) Modelling of a Double-Glass Photovoltaic Module Using Finite Differences. Applied Thermal Engineering, 25, 2854-2877. https://doi.org/10.1016/j.applthermaleng.2005.02.008
[43]
Tina, G.M., Tang, W.H. and Mahdi, A.J. (2011) Thermal Parameter Identification of Photovoltaic Module Using Genetic Algorithm. IET Conference on Renewable Power Generation (RPG 2011), Edinburgh, 6-8 September 2011, 21. https://doi.org/10.1049/cp.2011.0106
[44]
Silva, J.P., Nofuentes, G. and Muñoz, J.V. (2010) Spectral Reflectance Patterns of Photovoltaic Modules and Their Thermal Effects. Journal of Solar Energy Engineering, 132, Article ID: 041016. https://doi.org/10.1115/1.4002246
[45]
Rawat, R., Kaushik, S.C. and Lamba, R. (2016) A Review on Modeling, Design Methodology and Size Optimization of Photovoltaic Based Water Pumping, Standalone and Grid Connected System. Renew. Renewable and Sustainable Energy Reviews, 57, 1506-1519. https://doi.org/10.1016/j.rser.2015.12.228
[46]
Goudelis, G., Lazaridis, P.I. and Dhimish, M. (2022) A Review of Models for Photovoltaic Crack and Hotspot Prediction. Energies, 15, Article 4303. https://doi.org/10.3390/en15124303
[47]
Abderrezek, M. and Fathi, M. (2017) Experimental Study of the Dust Effect on Photovoltaic Panels’ Energy Yield. Solar Energy, 142, 308-320. https://doi.org/10.1016/j.solener.2016.12.040
[48]
Sharif, S. (1995) Chemical and Mineral Composition of Dust and Its Effect on the Dielectric Constant. IEEE Transactions on Geoscience and Remote Sensing, 33, 353-359. https://doi.org/10.1109/36.377935
[49]
Looyenga, H. (1965) Dielectric Constants of Heterogeneous Mixtures. Physica, 31, 401-406. https://doi.org/10.1016/0031-8914(65)90045-5
[50]
Neelakantaswamy, P.S., Chowdari, B.V.R. and Rajaratnam, A. (1983) Estimation of Permittivity of a Compact Crystal by Dielectric Measurements on Its Powder: A Stochastic Mixture Model for the Powder-Dielectric. Journal of Physics D: Applied Physics, 16, 1785-1799. https://doi.org/10.1088/0022-3727/16/9/026
[51]
Soklič, A., Tasbihi, M., Kete, M. and Štangar, U.L. (2015) Deposition and Possible Influence of a Self-Cleaning Thin TiO2/SiO2 Film on a Photovoltaic Module Efficiency. Catalysis Today, 252, 54-60. https://doi.org/10.1016/j.cattod.2014.10.021
[52]
Todorova, N., Giannakopoulou, T., Pomoni, K., Yu, J., Vaimakis, T. and Trapalis, C. (2015) Photocatalytic NOx Oxidation over Modified ZnO/TiO2 Thin Films. Catalysis Today, 252, 41-46. https://doi.org/10.1016/j.cattod.2014.11.008
[53]
Syafiq, A., Pandey, A.K., Adzman, N.N. and Rahim, N.A. (2018) Advances in Approaches and Methods for Self-Cleaning of Solar Photovoltaic Panels. Solar Energy, 162, 597-619. https://doi.org/10.1016/j.solener.2017.12.023
[54]
Sims, R., et al. (2003) Development of a Transparent Self-Cleaning Dust Shield for Solar Panels. Proceedings of the ESA-IEEE Joint Meeting on Electrostatics 2003.
[55]
Calle, C., et al. (2004) Electrodynamic Dust Shield for Solar Panels on Mars. https://www.researchgate.net/profile/Carlos-Calle-2/publication/253742730_Electrodynamic_Dust_Shield_for_Solar_Panels_on_Mars/links/02e7e53b4209f3a4e6000000/Electrodynamic-Dust-Shield-for-Solar-Panels-on-Mars.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
[56]
Nicoll, K.A., Harrison, R.G. and Ulanowski, Z. (2011) Observations of Saharan Dust Layer Electrification. Environmental Research Letters, 6, Article ID: 014001. https://doi.org/10.1088/1748-9326/6/1/014001
[57]
Renard, J.B., et al. (2013) In Situ Measurements of Desert Dust Particles above the Western Mediterranean Sea with the Balloon-Borne Light Optical Aerosol Counter/Sizer (LOAC) during the ChArMEx Campaign of Summer 2013. Atmospheric Chemistry and Physics, 18, 3677-3699. https://doi.org/10.5194/acp-18-3677-2018
[58]
Huang, Y., et al. (2020) Climate Models and Remote Sensing Retrievals Neglect Substantial Desert Dust Asphericity. Geophysical Research Letters, 47, e2019GL086592. https://doi.org/10.1029/2019GL086592
[59]
Mallios, S.A., Daskalopoulou, V. and Amiridis, V. (2022) Modeling of the Electrical Interaction between Desert Dust Particles and the Earth’s Atmosphere. Journal of Aerosol Science, 165, Article ID: 106044. https://doi.org/10.1016/j.jaerosci.2022.106044
[60]
Ilse, K.K., Figgis, B.W., Naumann, V., Hagendorf, C. and Bagdahn, J. (2018) Fundamentals of Soiling Processes on Photovoltaic Modules. Renewable and Sustainable Energy Reviews, 98, 239-254. https://doi.org/10.1016/j.rser.2018.09.015
[61]
El-Shobokshy, M.S., Mujahid, A. and Zakzouk, A.K.M. (1985) Effects of Dust on the Performance of Concentrator Photovoltaic Cells. IEE Proceedings, 132, 5-8. https://doi.org/10.1049/ip-i-1.1985.0002
[62]
Liu, X., Yue, S., Lu, L. and Li, J. (2021) Investigation of the Dust Scaling Behaviour on Solar Photovoltaic Panels. Journal of Cleaner Production, 295, Article ID: 126391. https://doi.org/10.1016/j.jclepro.2021.126391
[63]
Chaichan, M.T., Kazem, H.A., Al-Waeli, A.H.A. and Sopian, K. (2020) The Effect of Dust Components and Contaminants on the Performance of Photovoltaic for the Four Regions in Iraq: A Practical Study. Renewable Energy and Environmental Sustainability, 5, Article No. 3. https://doi.org/10.1051/rees/2019009
[64]
Ramirez, C.E., Quinete, N., Rojas De Astudillo, L., Arroyo-Mora, L.E., Seba, D. and Gardinali, P. (2022) Elemental Composition of Airborne Particulate Matter from Coastal South Florida Area Influenced by African Dust Events. Aeolian Research, 54, Article ID: 100774. https://doi.org/10.1016/j.aeolia.2022.100774
[65]
Plocoste, T. (2022) Multiscale Analysis of the Dynamic Relationship between Particulate Matter (PM10) and Meteorological Parameters Using CEEMDAN: A Focus on “Godzilla” African Dust Event. Atmospheric Pollution Research, 13, Article ID: 101252. https://doi.org/10.1016/j.apr.2021.101252
[66]
Weinzierl, B., et al. (2017) The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights. Bulletin of the American Meteorological Society, 98, 1427-1451. https://doi.org/10.1175/BAMS-D-15-00142.1
[67]
Mamun, M.A.A., Islam, M.M., Hasanuzzaman, M. and Selvaraj, J. (2022) Effect of Tilt Angle on the Performance and Electrical Parameters of a PV Module: Comparative Indoor and Outdoor Experimental Investigation. Energy and Built Environment, 3, 278-290. https://doi.org/10.1016/j.enbenv.2021.02.001
[68]
Li, X., Peng, J., Li, N., Wang, M. and Wang, C. (2017) Study on Optimum Tilt Angles of Photovoltaic Shading Systems in Different Climatic Regions of China. Procedia Engineering, 205, 1157-1164. https://doi.org/10.1016/j.proeng.2017.10.185
[69]
Archer, M.D. and Hill, R. (2001) Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy: Volume 1. Imperial College Press, London. https://doi.org/10.1142/p139
[70]
Asl-Soleimani, E., Farhangi, S. and Zabihi, M.S. (2001) The Effect of Tilt Angle, Air Pollution on Performance of Photovoltaic Systems in Tehran. Renewable Energy, 24, 459-468. https://doi.org/10.1016/S0960-1481(01)00029-5
[71]
Elminir, H.K., Ghitas, A.E., Hamid, R.H., El-Hussainy, F., Beheary, M.M. and Abdel-Moneim, K.M. (2006) Effect of Dust on the Transparent Cover of Solar Collectors. Energy Conversion and Management, 47, 3192-3203. https://doi.org/10.1016/j.enconman.2006.02.014
[72]
Pruppacher, H.R. and Klett, J.D. (2010) Microphysics of Clouds and Precipitation. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48100-0
[73]
Reid, J.S., et al. (2003) Comparison of Size and Morphological Measurements of Coarse Mode Dust Particles from Africa. Journal of Geophysical Research: Atmospheres, 108. https://doi.org/10.1029/2002JD002485
[74]
Clarke, A.D., et al. (2004) Size Distributions and Mixtures of Dust and Black Carbon Aerosol in Asian Outflow: Physiochemistry and Optical Properties. Journal of Geophysical Research: Atmospheres, 109. https://doi.org/10.1029/2003JD004378
[75]
McConnell, C.L., et al. (2008) Seasonal Variations of the Physical and Optical Characteristics of Saharan Dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) Experiment. Journal of Geophysical Research: Atmospheres, 113. https://doi.org/10.1029/2007JD009606
[76]
Wagner, F., et al. (2009) Properties of Dust Aerosol Particles Transported to Portugal from the Sahara Desert. Tellus B: Chemical and Physical Meteorology, 61, 297-306. https://doi.org/10.1111/j.1600-0889.2008.00393.x
[77]
Johnson, B.T. and Osborne, S.R. (2011) Physical and Optical Properties of Mineral Dust Aerosol Measured by Aircraft during the GERBILS Campaign. Quarterly Journal of the Royal Meteorological Society, 137, 1117-1130. https://doi.org/10.1002/qj.777
[78]
Weinzierl, B., et al. (2011) Microphysical and Optical Properties of Dust and Tropical Biomass burning Aerosol Layers in the Cape Verde Region—An Overview of the Airborne in Situ and Lidar Measurements during SAMUM-2. Tellus B: Chemical and Physical Meteorology, 63, 589-618. https://doi.org/10.1111/j.1600-0889.2011.00566.x
[79]
Ryder, C.L., et al. (2018) Coarse-Mode Mineral Dust Size Distributions, Composition and Optical Properties from AER-D Aircraft Measurements over the Tropical Eastern Atlantic. Atmospheric Chemistry and Physics, 18, 17225-17257. https://doi.org/10.5194/acp-18-17225-2018
[80]
Smits, A.J. and Dussauge, J.P. (2006) Turbulent Shear Layers in Supersonic Flow. 2nd Edition, Springer, New York.
[81]
Javed, W. and Guo, B. (2020) Effect of Relative Humidity on Dust Removal Performance of Electrodynamic Dust Shield. Journal of Electrostatics, 105, Article ID: 103434. https://doi.org/10.1016/j.elstat.2020.103434
[82]
Quan, Z., et al. (2022) A Review of Dust Deposition Mechanism and Self-Cleaning Methods for Solar Photovoltaic Modules. Coatings, 13, Article 49. https://doi.org/10.3390/coatings13010049
[83]
Hegazy, A.A. (2001) Effect of Dust Accumulation on Solar Transmittance through Glass Covers of Plate-Type Collectors. Renewable Energy, 22, 525-540. https://doi.org/10.1016/S0960-1481(00)00093-8
[84]
Ilse, K.K., et al. (2018) Comprehensive Analysis of Soiling and Cementation Processes on PV Modules in Qatar. Solar Energy Materials and Solar Cells, 186, 309-323. https://doi.org/10.1016/j.solmat.2018.06.051
[85]
Figgis, B., et al. (2018) Investigation of Factors Affecting Condensation on Soiled PV Modules. Solar Energy, 159, 488-500. https://doi.org/10.1016/j.solener.2017.10.089
[86]
Ilse, K.K., et al. (2018) Comparing Indoor and Outdoor Soiling Experiments for Different Glass Coatings and Microstructural Analysis of Particle Caking Processes. IEEE Journal of Photovoltaics, 8, 203-209. https://doi.org/10.1109/JPHOTOV.2017.2775439
[87]
Burgo, T.A.D.L., Rezende, C.A., Bertazzo, S., Galembeck, A. and Galembeck, F. (2011) Electric Potential Decay on Polyethylene: Role of Atmospheric Water on Electric Charge Build-Up and Dissipation. Journal of Electrostatics, 69, 401-409. https://doi.org/10.1016/j.elstat.2011.05.005
[88]
Elajnaf, A., Carter, P. and Rowley, G. (2007) The Effect of Relative Humidity on Electrostatic Charge Decay of Drugs and Excipient Used in Dry Powder Inhaler Formulation. Drug Development and Industrial Pharmacy, 33, 967-974. https://doi.org/10.1080/03639040601134207
[89]
Sayyah, A., Crowell, D.R., Raychowdhury, A., Horenstein, M.N. and Mazumder, M.K. (2017) An Experimental Study on the Characterization of Electric Charge in Electrostatic Dust Removal. Journal of Electrostatics, 87, 173-179. https://doi.org/10.1016/j.elstat.2017.04.001
[90]
Smestad, G.P., et al. (2020) Modelling Photovoltaic Soiling Losses through Optical Characterization. Scientific Reports, 10, Article No. 58. https://doi.org/10.1038/s41598-019-56868-z
[91]
Al Garni, H.Z. (2022) The Impact of Soiling on PV Module Performance in Saudi Arabia. Energies, 15, Article 8033. https://doi.org/10.3390/en15218033
[92]
Tanesab, J., Parlevliet, D., Whale, J. and Urmee, T. (2016) Dust Effect and Its Economic Analysis on PV Modules Deployed in a Temperate Climate Zone. Energy Procedia, 100, 65-68. https://doi.org/10.1016/j.egypro.2016.10.154
[93]
Cuddihy, E.F. (1980) Theoretical Considerations of Soil Retention. Solar Energy Materials, 3, 21-33. https://doi.org/10.1016/0165-1633(80)90047-7
[94]
Zjavka, L. (2023) Solar and Wind Quantity 24 h—Series Prediction Using PDE-Modular Models Gradually Developed according to Spatial Pattern Similarity. Energies, 16, Article 1085. https://doi.org/10.3390/en16031085
[95]
Mekhilef, S., Saidur, R. and Kamalisarvestani, M. (2012) Effect of Dust, Humidity and Air Velocity on Efficiency of Photovoltaic Cells. Renewable and Sustainable Energy Reviews, 16, 2920-2925. https://doi.org/10.1016/j.rser.2012.02.012
[96]
El-Nashar, A.M. (1994) The Effect of Dust Accumulation on the Performance of Evacuated Tube Collectors. Solar Energy, 53, 105-115. https://doi.org/10.1016/j.rser.2012.02.012
[97]
Van Der Does, M., Korte, L.F., Munday, C.I., Brummer, G.J.A. and Stuut, J.B.W. (2016) Particle Size Traces Modern Saharan Dust Transport and Deposition across the Equatorial North Atlantic. Atmospheric Chemistry and Physics, 16, 13697-13710. https://doi.org/10.5194/acp-16-13697-2016
[98]
Kok, J.F., et al. (2017) Smaller Desert Dust Cooling Effect Estimated from Analysis of Dust Size and Abundance. Nature Geoscience, 10, 274-278. https://doi.org/10.1038/ngeo2912
[99]
Adebiyi, A.A. and Kok, J.F. (2020) Climate Models Miss Most of the Coarse Dust in the Atmosphere. Science Advances, 6, eaaz9507. https://doi.org/10.1126/sciadv.aaz9507
[100]
Di Biagio, C., Boucher, H., Caquineau, S., Chevaillier, S., Cuesta, J. and Formenti, P. (2014) Variability of the Infrared Complex Refractive Index of African Mineral Dust: Experimental Estimation and Implications for Radiative Transfer and Satellite Remote Sensing. Atmospheric Chemistry and Physics, 14, 11093-11116. https://doi.org/10.5194/acp-14-11093-2014
[101]
Li, L., et al. (2020) Quantifying the Range of the Dust Direct Radiative Effect Due to Source Mineralogy Uncertainty. Atmospheric Chemistry and Physics, 21, 3973-4005. https://doi.org/10.5194/acp-2020-547
[102]
Mahowald, N.M., et al. (2010) Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry. Atmospheric Chemistry and Physics, 10, 10875-10893. https://doi.org/10.5194/acp-10-10875-2010
[103]
Hooper, J. and Marx, S. (2018) A Global Doubling of Dust Emissions during the Anthropocene? Global and Planetary Change, 169, 70-91. https://doi.org/10.1016/j.gloplacha.2018.07.003
[104]
Kok, J.F., et al. (2023) Mineral Dust Aerosol Impacts on Global Climate and Climate Change. Nature Reviews Earth & Environment, 4, 71-86. https://doi.org/10.1038/s43017-022-00379-5
[105]
Stanelle, T., Bey, I., Raddatz, T., Reick, C. and Tegen, I. (2014) Anthropogenically Induced Changes in Twentieth Century Mineral Dust Burden and the Associated Impact on Radiative Forcing. Journal of Geophysical Research: Atmospheres, 119, 13526-13546. https://doi.org/10.1002/2014JD022062
[106]
Kok, J.F., Ward, D.S., Mahowald, N.M. and Evan, A.T. (2018) Global and Regional Importance of the Direct Dust-Climate Feedback. Nature Communications, 9, Article No. 241. https://doi.org/10.1038/s41467-017-02620-y
[107]
Nahar, N.M. and Gupta, J.P. (1990) Effect of Dust on Transmittance of Glazing Materials for Solar Collectors under Arid Zone Conditions of India. Solar & Wind Technology, 7, 237-243. https://doi.org/10.1016/0741-983X(90)90092-G
[108]
Caron, J.R. and Littmann, B. (2013) Direct Monitoring of Energy Lost Due to Soiling on First Solar Modules in California. IEEE Journal of Photovoltaics, 3, 336-340. https://doi.org/10.1109/JPHOTOV.2012.2216859
[109]
Hottel, H. and Woertz, B. (1942) The Performance of Flat-Plate Solar-Heat Collectors. Journal of Fluids Engineering, 64, 91-103. https://doi.org/10.1115/1.4018980
[110]
Cabanillas, R.E. and Munguía, H. (2011) Dust Accumulation Effect on Efficiency of Si Photovoltaic Modules. Journal of Renewable and Sustainable Energy, 3, Article ID: 043114. https://doi.org/10.1063/1.3622609
[111]
Jiang, H., Lu, L. and Sun, K. (2011) Experimental Investigation of the Impact of Airborne Dust Deposition on the Performance of Solar Photovoltaic (PV) Modules. Atmospheric Environment, 45, 4299-4304. https://doi.org/10.1016/j.atmosenv.2011.04.084
[112]
Appels, R., Muthirayan, B., Beerten, A., Paesen, R., Driesen, J. and Poortmans, J. (2012) The Effect of Dust Deposition on Photovoltaic Modules. 2012 38th IEEE Photovoltaic Specialists Conference, Austin, 3-8 June 2012, 1886-1889. https://doi.org/10.1109/PVSC.2012.6317961
[113]
Hee, J.Y., Kumar, L.V., Danner, A.J., Yang, H. and Bhatia, C.S. (2012) The Effect of Dust on Transmission and Self-Cleaning Property of Solar Panels. Energy Procedia, 15, 421-427. https://doi.org/10.1016/j.egypro.2012.02.051
[114]
Haeberlin, H., Graf, J.D. and Fachhochschule, B. (1998) Gradual Reduction of PV Generator Yield Due to Pollution. https://api.semanticscholar.org/CorpusID:110034589
[115]
Ryan, C.P., Vignola, F. and McDaniels, D.K. (1989) Solar Cell Arrays: Degradation Due to Dirt. Proceeding American Section of International Solar Energy Society, 234-237.
[116]
Gupta, V., Sharma, M., Pachauri, R.K. and Dinesh Babu, K.N. (2019) Comprehensive Review on Effect of Dust on Solar Photovoltaic System and Mitigation Techniques. Solar Energy, 191, 596-622. https://doi.org/10.1016/j.solener.2019.08.079
[117]
Kimber, A., Mitchell, L., Nogradi, S. and Wenger, H. (2006) The Effect of Soiling on Large Grid-Connected Photovoltaic Systems in California and the Southwest Region of the United States. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, 7-12 May 2006, 2391-2395. https://doi.org/10.1109/WCPEC.2006.279690
[118]
Jiang, Y., Lu, L., Ferro, A.R. and Ahmadi, G. (2018) Analyzing Wind Cleaning Process on the Accumulated Dust on Solar Photovoltaic (PV) Modules on Flat Surfaces. Solar Energy, 159, 1031-1036. https://doi.org/10.1016/j.solener.2017.08.083
[119]
Yan, C., Qu, M., Chen, Y. and Feng, M. (2020) Snow Removal Method for Self-Heating of Photovoltaic Panels and Its Feasibility Study. Solar Energy, 206, 374-380. https://doi.org/10.1016/j.solener.2020.04.064
[120]
Andenæs, E., Jelle, B.P., Ramlo, K., Kolås, T., Selj, J. and Foss, S.E. (2018) The Influence of Snow and Ice Coverage on the Energy Generation from Photovoltaic Solar Cells. Solar Energy, 159, 318-328. https://doi.org/10.1016/j.solener.2017.10.078
[121]
Heidari, N., Gwamuri, J., Townsend, T. and Pearce, J.M. (2015) Impact of Snow and Ground Interference on Photovoltaic Electric System Performance. IEEE Journal of Photovoltaics, 5, 1680-1685. https://doi.org/10.1109/JPHOTOV.2015.2466448
[122]
Andrews, R.W., Pollard, A. and Pearce, J.M. (2013) A New Method to Determine the Effects of Hydrodynamic Surface Coatings on the Snow Shedding Effectiveness of Solar Photovoltaic Modules. Solar Energy Materials and Solar Cells, 113, 71-78. https://doi.org/10.1016/j.solmat.2013.01.032
[123]
Marion, B., Schaefer, R., Caine, H. and Sanchez, G. (2013) Measured and Modeled Photovoltaic System Energy Losses from Snow for Colorado and Wisconsin Locations. Solar Energy, 97, 112-121. https://doi.org/10.1016/j.solener.2013.07.029
[124]
Sugiura, T., Yamada, T., Nakamura, H., Umeya, M., Sakuta, K. and Kurokawa, K. (2003) Measurements, Analyses and Evaluation of Residential PV Systems by Japanese Monitoring Program. Solar Energy Materials and Solar Cells, 75, 767-779. https://doi.org/10.1016/S0927-0248(02)00132-0
[125]
Taylor, M. (2003) Statistical Relationship between Photovoltaic Generation and Electric Utility Demand in Minnesota (1996-2002). American Solar Energy Society Solar 2003 Conference, Austin, 21-26 June 2003.
[126]
Guechi, A., Chegaar, M. and Aillerie, M. (2012) Environmental Effects on the Performance of Nanocrystalline Silicon Solar Cells. Energy Procedia, 18, 1611-1623. https://doi.org/10.1016/j.egypro.2012.06.002
[127]
Huang, B., Zhao, J., Chai, J., Xue, B., Zhao, F. and Wang, X. (2017) Environmental Influence Assessment of China’s Multi-Crystalline Silicon (Multi-Si) Photovoltaic Modules Considering Recycling Process. Solar Energy, 143, 132-141. https://doi.org/10.1016/j.solener.2016.12.038
[128]
Ensikat, H.J., Ditsche-Kuru, P., Neinhuis, C. and Barthlott, W. (2011) Superhydrophobicity in Perfection: The Outstanding Properties of the Lotus Leaf. Beilstein Journal of Nanotechnology, 2, 152-161. https://doi.org/10.3762/bjnano.2.19
[129]
Przybylak, M., Maciejewski, H., Dutkiewicz, A., Dąbek, I. and Nowicki, M. (2016) Fabrication of Superhydrophobic Cotton Fabrics by a Simple Chemical Modification. Cellulose, 23, 2185-2197. https://doi.org/10.1007/s10570-016-0940-z
[130]
Jong, S., Auping, W., Oosterveld, W.T. and Usanov, A. (2017) The Geopolitical Impact of Climate Mitigation Policies. https://hcss.nl/wp-content/uploads/2017/04/HCSS_Energytransition.pdf
[131]
Dahlioui, D., Alaoui, S.M., Laarabi, B. and Barhdadi, A. (2022) Waterless Cleaning Technique for Photovoltaic Panels on Dual-Axis Tracker. Environmental Science and Pollution Research, 30, 81667-81685. https://doi.org/10.1007/s11356-022-23218-y
[132]
Xiao, L., et al. (2017) Novel Robust Superhydrophobic Coating with Self-Cleaning Properties in Air and Oil Based on Rare Earth Metal Oxide. Industrial & Engineering Chemistry Research, 56, 12354-12361. https://doi.org/10.1021/acs.iecr.7b03131
[133]
Salamah, T., et al. (2022) Effect of Dust and Methods of Cleaning on the Performance of Solar PV Module for Different Climate Regions: Comprehensive Review. Science of The Total Environment, 827, Article ID: 154050. https://doi.org/10.1016/j.scitotenv.2022.154050
[134]
Adak, D., Bhattacharyya, R., Saha, H. and Maiti, P.S. (2020) Sol-Gel Processed Silica Based Highly Transparent Self-Cleaning Coatings for Solar Glass Covers. Materials Today: Proceedings, 33, 2429-2433. https://doi.org/10.1016/j.matpr.2020.01.331
[135]
Brown, K., Narum, T. and Jing, N. (2012) Soiling Test Methods and Their Use in Predicting Performance of Photovoltaic Modules in Soiling Environments. 2012 38th IEEE Photovoltaic Specialists Conference, Austin, 3-8 June 2012, 001881-001885. https://doi.org/10.1109/PVSC.2012.6317960
[136]
Oehler, G.C., et al. (2020) Testing the Durability of Anti-Soiling Coatings for Solar Cover Glass by Outdoor Exposure in Denmark. Energies, 13, Article 299. https://doi.org/10.3390/en13020299
[137]
Al-Badra, M.Z., Abd-Elhady, M.S. and Kandil, H.A. (2020) A Novel Technique for Cleaning PV Panels Using Antistatic Coating with a Mechanical Vibrator. Energy Reports, 6, 1633-1637. https://doi.org/10.1016/j.egyr.2020.06.020
[138]
He, G., Zhou, C. and Li, Z. (2011) Review of Self-Cleaning Method for Solar Cell Array. Procedia Engineering, 16, 640-645. https://doi.org/10.1016/j.proeng.2011.08.1135
[139]
Karuppuchamy, S. and Jeong, J.M. (2005) Super-Hydrophilic Amorphous Titanium Dioxide Thin Film Deposited by Cathodic Electrodeposition. Materials Chemistry and Physics, 93, 251-254. https://doi.org/10.1016/j.matchemphys.2005.04.015
[140]
Haider, A.J., Jameel, Z.N. and Al-Hussaini, I.H.M. (2019) Review on: Titanium Dioxide Applications. Energy Procedia, 157, 17-29. https://doi.org/10.1016/j.egypro.2018.11.159
[141]
Nakajima, A., Hashimoto, K. and Watanabe, T. (2001) Recent Studies on Super-Hydrophobic Films. Monatshefte für Chemie/Chemical Monthly, 132, 31-41. https://doi.org/10.1007/s007060170142
[142]
Watanabe, T., et al. (1999) Photocatalytic Activity and Photoinduced Hydrophilicity of Titanium Dioxide Coated Glass. Thin Solid Films, 351, 260-263. https://doi.org/10.1016/S0040-6090(99)00205-9
[143]
Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (2001) Highly Hydrophilic Surfaces of Cathodically Polarized Amorphous TiO2 Electrodes. Journal of the Electrochemical Society, 148, E395. https://doi.org/10.1149/1.1399279
[144]
Wang, R., et al. (1997) Light-Induced Amphiphilic Surfaces. Nature, 388, 431-432. https://doi.org/10.1038/41233
[145]
Sakai, N., Wang, R., Fujishima, A., Watanabe, T. and Hashimoto, K. (1998) Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces. Langmuir, 14, 5918-5920. https://doi.org/10.1021/la980623e
[146]
Wang, R., et al. (1998) Photogeneration of Highly Amphiphilic TiO2 Surfaces. Advanced Materials, 10, 135-138. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
[147]
Sirghi, L., Aoki, T. and Hatanaka, Y. (2002) Hydrophilicity of TiO2 Thin Films Obtained by Radio Frequency Magnetron Sputtering Deposition. Thin Solid Films, 422, 55-61. https://doi.org/10.1016/S0040-6090(02)00949-5
[148]
Sirghi, L. and Hatanaka, Y. (2003) Hydrophilicity of Amorphous TiO2 Ultra-Thin Films. Surface Science, 530, L323-L327. https://doi.org/10.1016/S0039-6028(03)00397-2
[149]
Wang, P., et al. (2018) Reducing the Effect of Dust Deposition on the Generating Efficiency of Solar PV Modules by Super-Hydrophobic Films. Solar Energy, 169, 277-283. https://doi.org/10.1016/j.solener.2017.12.052
[150]
Carneiro, J.O., et al. (2007) Iron-doped Photocatalytic TiO2 Sputtered Coatings on Plastics for Self-Cleaning Applications. Materials Science and Engineering: B, 138, 144-150. https://doi.org/10.1016/j.mseb.2005.08.130
[151]
Fu, G., Vary, P.S. and Lin, C.T. (2005) Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B, 109, 8889-8898. https://doi.org/10.1021/jp0502196
[152]
Chen, D., et al. (2020) Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. Journal of Cleaner Production, 268, Article ID: 121725. https://doi.org/10.1016/j.jclepro.2020.121725
[153]
Lu, H. and Zheng, C. (2022) Comparison of Dust Deposition Reduction Performance by Super-Hydrophobic and Super-Hydrophilic Coatings for Solar PV Cells. Coatings, 12, Article 502. https://doi.org/10.3390/coatings12040502
[154]
Mohamed, A.M.A., Abdullah, A.M. and Younan, N.A. (2015) Corrosion Behavior of Superhydrophobic Surfaces: A Review. Arabian Journal of Chemistry, 8, 749-765. https://doi.org/10.1016/j.arabjc.2014.03.006
[155]
Dalton, J.S., Janes, P.A., Jones, N.G., Nicholson, J.A., Hallam, K.R. and Allen, G.C. (2002) Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach. Environmental Pollution, 120, 415-422. https://doi.org/10.1016/S0269-7491(02)00107-0
[156]
Arabatzis, I., et al. (2018) Photocatalytic, Self-Cleaning, Antireflective Coating for Photovoltaic Panels: Characterization and Monitoring in Real Conditions. Solar Energy, 159, 251-259. https://doi.org/10.1016/j.solener.2017.10.088
[157]
Yu, H., Zhang, K. and Rossi, C. (2007) Experimental Study of the Photocatalytic Degradation of Formaldehyde in Indoor Air Using a Nano-Particulate Titanium Dioxide Photocatalyst. Indoor and Built Environment, 16, 529-537. https://doi.org/10.1177/1420326X07083513
[158]
Bethea, R.M., Barriger, M.T., Williams, P.F. and Chin, S. (1981) Environmental Effects on Solar Concentrator Mirrors. Solar Energy, 27, 497-511. https://doi.org/10.1016/0038-092X(81)90045-1
[159]
Zaihidee, F.M., Mekhilef, S., Seyedmahmoudian, M. and Horan, B. (2016) Dust as an Unalterable Deteriorative Factor Affecting PV Panel’s Efficiency: Why and How. Renewable and Sustainable Energy Reviews, 65, 1267-1278. https://doi.org/10.1016/j.rser.2016.06.068
[160]
Abhilash, B. and Panchal, A.K. (2016) Self-Cleaning and Tracking Solar Photovoltaic Panel for Improving Efficiency. 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, 27-28 February 2016, 1-4. https://doi.org/10.1109/AEEICB.2016.7538291
[161]
Jamil, W.J., Abdul Rahman, H., Shaari, S. and Salam, Z. (2017) Performance Degradation of Photovoltaic Power System: Review on Mitigation Methods. Renewable and Sustainable Energy Reviews, 67, 876-891. https://doi.org/10.1016/j.rser.2016.09.072
[162]
Guo, B., Figgis, B.and Javed, W. (2019) Measurement of Electrodynamic Dust Shield Efficiency in Field Conditions. Journal of Electrostatics, 97, 26-30. https://doi.org/10.1016/j.elstat.2018.11.007
[163]
Kawamoto, H. and Guo, B. (2018) Improvement of an Electrostatic Cleaning System for Removal of Dust from Solar Panels. Journal of Electrostatics, 91, 28-33. https://doi.org/10.1016/j.elstat.2017.12.002
[164]
Sayyah, A., Horenstein, M.N., Mazumder, M.K. and Ahmadi, G. (2016) Electrostatic Force Distribution on an Electrodynamic Screen. Journal of Electrostatics, 81, 24-36. https://doi.org/10.1016/j.elstat.2016.02.004
[165]
Rifai, A., Abu-Dheir, N., Khaled, M., Al-Aqeeli, N. and Sami Yilbas, B. (2017) Characteristics of Oil Impregnated Hydrophobic Glass Surfaces in Relation to Self-Cleaning of Environmental Dust Particles. Solar Energy Materials and Solar Cells, 171, 8-15. https://doi.org/10.1016/j.solmat.2017.06.017
[166]
Fernández-García, A., álvarez-Rodrigo, L., Martínez-Arcos, L., Aguiar, R. and Márquez-Payés, J.M. (2014) Study of Different Cleaning Methods for Solar Reflectors Used in CSP Plants. Energy Procedia, 49, 80-89. https://doi.org/10.1016/j.egypro.2014.03.009
[167]
Kazem, H.A. and Chaichan, M.T. (2019) The Effect of Dust Accumulation and Cleaning Methods on PV Panels’ Outcomes Based on an Experimental Study of siX Locations in Northern Oman. Solar Energy, 187, 30-38. https://doi.org/10.1016/j.solener.2019.05.036
[168]
Pedrazzi, S., Allesina, G. and Muscio, A. (2018) Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation. Energies, 11, Article 3448. https://doi.org/10.3390/en11123448
[169]
Bouaddi, S., et al. (2018) A Review of Conventional and Innovative-Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants. Sustainability, 10, Article 3937. https://doi.org/10.3390/su10113937