全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonlinear Violence in Nonlinear Oscillations at High Energy

DOI: 10.4236/am.2024.151007, PP. 65-95

Keywords: High-Energy Oscillations, Nonlinear Violence, Boundary-Layer Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E; specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.

References

[1]  Poincaré, H. (1993) New Methods of Celestial Mechanics. Springer-Verlag, Berlin.
[2]  Lindstedt, A. (1884) Ueber die Bestimmung der gegenseitigen Entfernungen in dem Probleme der drei Körper. Astronomische Nachrichten, 107, 197-214.
https://doi.org/10.1002/asna.18841071301
[3]  Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin.
https://doi.org/10.1007/978-1-4612-1140-2
[4]  Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4757-2063-1
[5]  Kahn, P.B. and Zarmi, Y. (1998) Nonlinear Dynamics: Exploration through Normal Forms. Wiley, Hoboken.
[6]  Giampaolo, C. and Gaeta, G. (1999) Symmetry and Perturbation Theory in Nonlinear Dynamics. Springer, Berlin.
[7]  Murdock, J. (2003) Normal Forms and Unfoldings If Local Dynamical Systems. Springer, Berlin.
https://doi.org/10.1007/b97515
[8]  Chow, S.N. (2010) Normal Forms and Bifurcations of Planar Vector Fields. Cambridge University Press, Cambridge.
[9]  Nayfeh, A.H. (2011) The Method of Normal Forms. Wiley, Hoboken.
https://doi.org/10.1002/9783527635801
[10]  Cabral, H.E. and Dias, L.B. (2023) Normal Forms and Stability of Hamiltonian Systems. Springer, Berlin.
https://doi.org/10.1007/978-3-031-33046-9
[11]  Mitropolsky, Iu.A. (1967) Averaging Method in Nonlinear Mechanics. International Journal of Non-Linear Mechanics, 2, 69-96.
https://doi.org/10.1016/0020-7462(67)90020-0
[12]  Sanders, J. and Verhulst, F. (1985) Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4757-4575-7
[13]  Murdock, J.A. (1991) Perturbations: Theory and Methods. Wiley, Hoboken.
[14]  Nayfeh, A.H. (1985) Problems in Perturbation. Wiley, Hoboken.
[15]  Nayfeh, A.H. (1993) Method of Normal Forms. Wiley, Hoboken.
[16]  Nayfeh, A.H. (1993) Introduction to Perturbation Technique. John Wiley & Sons, Hoboken.
[17]  Nayfeh, A.H. and Mook, D.T. (1995) Nonlinear Oscillations. Wiley, Hoboken.
https://doi.org/10.1002/9783527617586
[18]  Nayfeh, A.H. (2000) Perturbation Methods. Wiley, Hoboken.
https://doi.org/10.1002/9783527617609
[19]  He, J.H. (2000) Α Review on Some New Recently Developed Nonlinear Analytical Techniques. The International Journal of Nonlinear Sciences and Numerical Simulation, 1, 51-70.
https://doi.org/10.1515/IJNSNS.2000.1.1.51
[20]  Cveticanin, L. (2014) Strongly Nonlinear Oscillators. Springer, Berlin.
https://doi.org/10.1007/978-3-319-05272-4
[21]  Ismail, G.M. (2021) Highly Accurate Analytical Solution for Free Vibrations of Strongly Nonlinear Duffing Oscillator. Journal of Low Frequency Noise, Vibration and Active Control, 41, 223-229.
https://doi.org/10.1177/14613484211034009
[22]  Tian, Y. and Feng, Q.Q. (2022) A Short Review on Approximate Analytical Methods for Nonlinear Problems. Thermal Science, 26, 2607-2628.
https://doi.org/10.2298/TSCI2203607T
[23]  Beléndez, A., et al. (2008) Higher-Order Approximate Solutions to the Relativistic and Duffing-Harmonic Oscillators by Modified He’s Homotopy Methods. Physica Scripta, 77, Article ID: 025004.
https://doi.org/10.1088/0031-8949/77/02/025004
[24]  Rosenberg, R.M. (1963) The Ateb(h)-Functions and Their Properties. Quarterly of Applied Mathematics, 21, 34-37.
https://doi.org/10.1090/qam/143948
[25]  Mishchenko, E. and Rozov, N.Kh. (1980) Differential Equations with Small Parameters and Relaxation Oscillations. Plenum Press, New York.
https://doi.org/10.1007/978-1-4615-9047-7
[26]  Pilipchuk, V.N. (1985) The Calculation of Strongly Non-Linear Systems Close to Vibration Impact Systems. Journal of Applied Mathematics and Mechanics, 49, 572-578.
https://doi.org/10.1016/0021-8928(85)90073-5
[27]  Pilipchuk, V.N. (2010) Nonlinear Dynamics: Between Linear and Impact Limits. Springer, New York.
[28]  Gendelman, O., et al. (1999) Transition from Strongly to Weakly Nonlinear Motions of Damped Nonlinear Oscillators. Nonlinear Dynamics, 20, 99-114.
https://doi.org/10.1023/A:1008354208466
[29]  Gendelman, O. and Vakakis, A.F. (2000) Transitions from Localization to Non-Localization in Strongly Nonlinear Damped Oscillators. Chaos, Solitons and Fractals, 11, 1535-1542.
https://doi.org/10.1016/S0960-0779(99)00076-4
[30]  Awrejcewicz, J. and Andrianov, I.V. (2002) Oscillations of Non-Linear System with Restoring Force Close to Sign (x). Journal of Sound and Vibration, 252, 962-966.
https://doi.org/10.1006/jsvi.2001.3666
[31]  Cveticanin, L. (2009) The Approximate Solving Methods for the Cubic Duffing Equation Based on the Jacobi Elliptic Functions. International Journal of Nonlinear Sciences and Numerical Simulation, 10, 1491-1516.
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1491
[32]  Andrianov, I.V., et al. (2011) Periodical Solutions of Certain Strongly Nonlinear Wave Equations. Numerical Analysis and Applicable Mathematics, 1389, 442-445.
https://doi.org/10.1063/1.3636758
[33]  Andrianov, I.V., et al. (2014) Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. Wiley, Chichester.
https://doi.org/10.1002/9781118725184
[34]  Andrianov, I.V., et al. (2016) Analytical Approximation of Periodic Ateb-Functions via Elementary Functions. AIP Conference Proceedings, 1773, Article ID: 040001.
https://doi.org/10.1063/1.4964964
[35]  Andrianov, I.V., et al. (2016) Analytical Approximation of Periodic Ateb-Functions via Elementary Functions. Proceedings 5th International Conference on Nonlinear Dynamics, Kharkov, 27-30 September 2016.
[36]  Goldstein, H. (1981) Classical Mechanics. Addison-Wesley, Boston, Ch. 3.
[37]  Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-1140-2
[38]  Mickens, R.E. (1981) Nonlinear Oscillations. Cambridge University Press, New York.
[39]  Rand, R.H. (2012) Lecture Notes on Nonlinear Vibrations. Cornell University, Ithaca, 13-17.
[40]  Salas, A.H. and Castillo, J.E. (2014) Exact Solutions to Cubic Duffing Equation for a Nonlinear Electrical Circuit. Visión Tecnológica, 7, 46-53.
[41]  Maimistov, A.I. (2003) Propagation of an Ultimately Short Electromagnetic Pulse in a Nonlinear Medium Described by the Fifth-Order Duffing Model. Optics and Spectroscopy, 94, 251-257.
https://doi.org/10.1134/1.1555186
[42]  Elías-Zúniga, A. (2013) Exact Solution of the Cubic-Quintic Duffing Oscillator. Applied Mathematical Modelling, 37, 2574-2579.
https://doi.org/10.1016/j.apm.2012.04.005
[43]  Beléndez, A., et al. (2016) Exact Solution for the Unforced Duffing Oscillator with Cubic and Quintic Nonlinearities. Nonlinear Dynamics, 86, 1687-1700.
https://doi.org/10.1007/s11071-016-2986-8
[44]  Beléndez, A., et al. (2017) Closed-Form Exact Solutions for the Unforced Quintic Nonlinear Oscillator. Advances in Mathematical Physics, 2017, Article ID: 7396063.
https://doi.org/10.1155/2017/7396063
[45]  MacColl, L.A. (1957) Theory of the Relativistic Oscillator. American Journal of Physics, 25, 535-539.
https://doi.org/10.1119/1.1934543
[46]  Harvey, A.L. (1972) Relativistic Harmonic Oscillator. Physical Review D, 6, 1474-1476.
https://doi.org/10.1103/PhysRevD.6.1474
[47]  Parker, E. (2017) A Relativistic Gravity Train. General Relativity and Gravitation, 49, Article No. 106.
https://doi.org/10.1007/s10714-017-2267-y
[48]  Zarmi, Y. (2022) Boundary-Layer Features in Conservative Nonlinear Oscillations. Nonlinear Dynamics, 109, 2851-2863.
https://doi.org/10.1007/s11071-022-07599-w
[49]  Kevorkian, J. and Cole, J.D. (1981) Perturbation Methods in Applied Mathematics. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4757-4213-8
[50]  Bender, C.M. and Orszag, S.A. (1999) Advanced Mathematical Methods for Scientists and Engineers. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4757-3069-2
[51]  Moreau, W., Easther, R. and Neutze, R. (1994) Relativistic (An)harmonic Oscillator. American Journal of Physics, 62, 531-535.
https://doi.org/10.1119/1.17513
[52]  Huang, Y.S. (1999) An Alternative Derivation of the Equations of Motion of the Relativistic Anharmonic Oscillator. American Journal of Physics, 67, 142-145.
https://doi.org/10.1119/1.19209
[53]  de la Fuente, D. and Torres, P.J. (2017) A New Relativistic Extension of the Harmonic Oscillator Satisfying an Isochronicity Principle. Qualitative Theory of Dynamical Systems, 16, 579-589.
https://doi.org/10.1007/s12346-016-0207-y
[54]  Gradshteyn, I.S. and Ryzhik, I.M. (2007) Tables of Integrals, Series and Products. 7th Edition, Elsevier, Amsterdam.
[55]  Fujiwara, K.M., et al. (2018) Experimental Realization of a Relativistic Harmonic Oscillator. New Journal of Physics, 20, Article ID: 063027.
https://doi.org/10.1088/1367-2630/aacb5a

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133