全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Planted Mangrove Species on Biomass Carbon and Other Structural Attributes in Ayeyarwady Region

DOI: 10.4236/ojf.2024.141007, PP. 98-116

Keywords: Species Selection, Biomass, Carbon Storage, Ayeyarwady Region, Myanmar

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Bruguiera sexangula. These species were selected for their fast growth, ability to protect against cyclones, and effectiveness in coastal defense during mangrove restoration. To collect data on tree structure and carbon storage, we conducted field surveys measuring parameters such as diameter at breast height (DBH), tree height and crown diameter for each tree. Non-destructive methods were used for data collection. Using ANOVA and post-hoc multiple comparison tests, we assessed differences in structure and carbon stock among the three species. Regression analysis was also performed to understand the relationship between carbon stock and structural attributes. In terms of stand densities, we observed variations among species, with pioneer stage plantations exhibiting higher densities compared to mature stands. Seedlings showed sufficient regeneration, supporting the sustainability of the forest. Biomass accumulation varied across species, with A. officinalis having the highest average biomass. Aboveground biomass showed a strong correlation with basal area. A. officinalis had the highest total biomass carbon accumulation at 55.29 ± 20.91 Mg C ha-1, with 77.43% aboveground carbon and 22.57% belowground carbon. A. marina stored 41.09 ± 11.03 Mg C ha-1, with a similar distribution of 76.05% aboveground and 23.95% belowground carbon, while B. sexangula stored 23.23 ± 3.12 Mg C ha-1, with 70.70% aboveground carbon and 29.30% belowground carbon. The amount of aboveground carbon was a significant portion of the overall carbon storage and correlated with tree density, diameter, basal area and height. Our findings highlight the importance of selecting suitable species and considering structural attributes for mangrove restoration and carbon storage efforts. These results provide valuable insights for managing mangrove plantations at regional and global levels. On average, the reported carbon sequestration was 154.40 MgCO2-eq ha-1.

References

[1]  Adame, M. F., Brown, C. J., Bejarano, M., Herrera-Silveira, J. A., Ezcurra, P., Kauffman, J. B., & Birdsey, R. (2018). The Undervalued Contribution of Mangrove Protection in Mexico to Carbon Emission Targets. Conservation Letters, 11, e12445.
https://doi.org/10.1111/conl.12445
[2]  Ahmed, S., Kamruzzaman, Md., Rahman, Md. S., Sakib, N., Azad, Md. S., & Dey, T. (2022). Stand Structure and Carbon Storage of A Young Mangrove Plantation Forest in Coastal Area of Bangladesh: The Promise of a Natural Solution. Nature-Based Solutions, 2, Article 100025.
https://doi.org/10.1016/j.nbsj.2022.100025
[3]  Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global Patterns in Mangrove Soil Carbon Stocks and Losses. Nature Climate Change, 7, 523-528.
https://doi.org/10.1038/nclimate3326
[4]  Aung, T. T., Mochida, Y., & Than, M. M. (2013). Prediction of Recovery Pathways of Cyclone-Disturbed Mangroves in the Mega Delta of Myanmar. Forest Ecology and Management, 293, 103-113.
https://doi.org/10.1016/j.foreco.2012.12.034
[5]  Aung, T. T., Than, M. M., Katsuhiro, O., & Yukira, M. (2011). Assessing the Status of Three Mangrove Species Restored by the Local Community in the Cyclone-Affected Area of the Ayeyarwady Delta, Myanmar. Wetlands Ecology and Management, 19, 195-208.
https://doi.org/10.1007/s11273-011-9211-9
[6]  Aye, W. M., & Takeda, S. (2020). Conversion of Abandoned Paddy Fields to Productive Land through Mangrove Restoration in Myanmar’s Ayeyarwady Delta. Paddy and Water Environment, 18, 417-429.
https://doi.org/10.1007/s10333-020-00791-x
[7]  Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem Carbon Stocks of Mangrove Forests along the Pacific and Caribbean Coasts of Honduras. Wetlands Ecology and Management, 24, 187-201.
https://doi.org/10.1007/s11273-016-9483-1
[8]  Bundotich, A., Publisher, J., Bundotich, G., Karachi, M., Fondo, E., & Kairo, J. (2023). Structural Inventory of Mangrove Forests in Ngomeni. Item Type Report Section Structural Inventory of Mangrove Forests in Ngomeni.
http://hdl.handle.net/1834/8315
[9]  Chong, P. W. (1988). Proposed Integrated Forest Management Planning and Utilization of Mangrove Resources in the Terraba-Sierpe Reserve, Costa Rica. FAO.
[10]  Cintron, G., & Novelli, Y. S. (1984). Methods for Studying Mangrove Structure. In S. C. Snedaker, & J. G. Snedaker (Eds.), The Mangrove Ecosystem: Research Methods (pp. 91-113). United Nations Educational, Scientific and Cultural Organization.
[11]  de Jong Cleyndert, G., Cuni-Sanchez, A., Seki, H. A., Shirima, D. D., Munishi, P. K. T., Burgess, N., Calders, K., & Marchant, R. (2020). The Effects of Seaward Distance on Above and Below Ground Carbon Stocks in Estuarine Mangrove Ecosystems. Carbon Balance and Management, 15, Article No. 27.
https://doi.org/10.1186/s13021-020-00161-4
[12]  Eamus, D., McGuinness, K., & Burrows, W. (2000). Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. National Carbon Accounting System Technical Report No. 5a. Australian Greenhouse Office.
[13]  Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Global Ecology and Biogeography, 20, 154-159.
https://doi.org/10.1111/j.1466-8238.2010.00584.x
[14]  Grime, J. P. (1998). Benefits of Plant Diversity to Ecosystems: Immediate, Filter and Founder Effects. Journal of Ecology, 86, 902-910.
https://doi.org/10.1046/j.1365-2745.1998.00306.x
[15]  Hamilton, S. E., & Friess, D. A. (2018). Global Carbon Stocks and Potential Emissions Due to Mangrove Deforestation from 2000 to 2012. Nature Climate Change, 8, 240-244.
https://doi.org/10.1038/s41558-018-0090-4
[16]  JICA (2005). The Study on Integrated Mangrove Management through Community Participation in the Ayeyawady Delta in the Union of Myanmar. Final Report, Volume II, Nippon Koei Co., Ltd.
[17]  Jimenez, J. A., Lugo, A. E., & Cintron, G. (1985). Tree Mortality in Mangrove Forests. Biotropica, 17, 177-185.
https://doi.org/10.2307/2388214
[18]  Kairo, J. G., Dahdouh-Guebas, F., Gwada, P. O., Ochieng, C., & Koedam, N. (2002). Regeneration Status of Mangrove Forests in Mida Creek, Kenya: A Compromised or Secured Future? AMBIO: A Journal of the Human Environment, 31, 562-568.
https://doi.org/10.1579/0044-7447-31.7.562
[19]  Kathiresan, K., Anburaj, R., Gomathi, V., & Saravanakumar, K. (2013). Carbon Sequestration Potential of Rhizophora mucronata and Avicennia marina as Influenced by age, Season, Growth and Sediment Characteristics in Southeast Coast of India. Journal of Coastal Conservation, 17, 397-408.
https://doi.org/10.1007/s11852-013-0236-5
[20]  Kogo, M. (1993). Final Report on Mangrove Reforestation Feasibility Study in the Ayeyarwady Delta. UNDP/FAO, MYA/90/003.
[21]  Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., & Miyagi, T. (2000). Top/Root Biomass Ratio of a Secondary Mangrove (Ceriops tagal (Perr.) CB Rob.) Forest. Forest Ecology and Management, 139, 127-134.
https://doi.org/10.1016/S0378-1127(99)00339-4
[22]  Komiyama, A., Poungparn, S., & Kato, S. (2005). Common Allometric Equations for Estimating the Tree Weight of Mangroves. Journal of Tropical Ecology, 21, 471-477.
https://doi.org/10.1017/S0266467405002476
[23]  Krauss, K. W., Lovelock, C. E., McKee, K. L., López-Hoffman, L., Ewe, S. M. L., & Sousa, W. P. (2008). Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquatic Botany, 89, 105-127.
https://doi.org/10.1016/J.AQUABOT.2007.12.014
[24]  Kusmana, C., & Susanti, S. (2015). Species Composition and Stand Structure of Natural Forest in Hutan Pendidikan Gunung Walat, Sukabumi (Komposisi Dan Struktur Tegakan Hutan Alam Di Hutan Pendidikan Gunung Walat, Sukabumi). Journal of Tropical Silviculture, 6, 210-217.
[25]  Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing Biomass and Carbon Storage of Above-Ground Structures in Dominant Mangrove Trees in the Sundarbans. Forest Ecology and Management, 261, 1325-1335.
https://doi.org/10.1016/j.foreco.2011.01.012
[26]  Mohamed, M. O. S., Neukermans, G., Kairo, J. G., Dahdouh-Guebas, F., & Koedam, N. (2009). Mangrove Forests in a Peri-Urban Setting: The Case of Mombasa (Kenya). Wetlands Ecology and Management, 17, 243-255.
https://doi.org/10.1007/s11273-008-9104-8
[27]  Monga, E., Mangora, M. M., & Trettin, C. C. (2022). Impact of Mangrove Planting on Forest Biomass Carbon and Other Structural Attributes in the Rufiji Delta, Tanzania. Global Ecology and Conservation, 35, e02100.
https://doi.org/10.1016/j.gecco.2022.e02100
[28]  Ono, K., & Fujiwara, K. (2004). Sprouting Characteristics of Heritiera fomes, the Main Mangrove Species in the Ayeyarwady Delta, Myanmar. Mangrove Science, 3, 33-38.
[29]  Pandey, H. P., Måren, I. E., & Dutta, I. C. (2012). REDD+ in Community Forests, Western Nepal: A Case from Gorkha District, Central Himalaya. LAM-BERT Academic Publishing.
[30]  Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M. K., Mandal, S. K., Majumder, N., De, T. K., & Mukhopadhyay, S. K. (2011). Carbon Sequestration and Annual Increase of Carbon Stock in a Mangrove Forest. Atmospheric Environment, 45, 5016-5024.
https://doi.org/10.1016/j.atmosenv.2011.04.074
[31]  Sitoe, A. A., Mandlate, L. J. C., & Guedes, B. S. (2014). Biomass and Carbon Stocks of Sofala Bay Mangrove Forests. Forests, 5, 1967-1981.
https://doi.org/10.3390/f5081967
[32]  Thant, Y. M., Kanzaki, M., Ohta, S., & Than, M. M. (2012). Carbon Sequestration by Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar. Tropics, 21, 1-10.
https://doi.org/10.3759/tropics.21.1
[33]  Thatoi, H., Samantaray, D., & Das, S. K. (2016). The Genus Avicennia, a Pioneer Group of Dominant Mangrove Plant Species with Potential Medicinal Values: A Review. Frontiers in Life Science, 9, 267-291.
https://doi.org/10.1080/21553769.2016.1235619
[34]  Tomlinson, P. B. (1986). The Botany of Mangroves. The Botany of Mangroves, 234, 373-374.
https://doi.org/10.1126/science.234.4774.373
[35]  Valiela, I., Bowen, J., & York, J. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At Least 35% of the Area of Mangrove Forests Has Been Lost in the Past Two Decades, Losses That Exceed Those for Tropical Rain Forests and Coral Reefs, Two Other Well-Known Threatened Environments. BioScience, 51, 807-815.
https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
[36]  Waring, R. H., & Major, J. (1964). Some Vegetation of the California Coastal Redwood Region in Relation to Gradients of Moisture, Nutrients, Light, and Temperature. Ecological Monographs, 34, 167-215.
https://doi.org/10.2307/1948452
[37]  Watson, J. G. (1928). Mangrove Forests of the Malay Peninsula. Malayan Forest Records, No. 6, 275 p. Forest Department, Federated Malay States.
[38]  Webb, E. L., & Than, M. M. (2000). Optimizing Investment Strategies for Mangrove Plantations by Considering Biological and Economic Parameters. Journal of Coastal Conservation, 6, 181-190.
https://doi.org/10.1007/BF02913814
[39]  Zhao, B., Kreuter, U., Li, B., Ma, Z., Chen, J., & Nakagoshi, N. (2004). An Ecosystem Service Value Assessment of Land-Use Change on Chongming Island, China. Land Use Policy, 21, 139-148.
https://doi.org/10.1016/j.landusepol.2003.10.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413