全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Explanation of Two Important Empirical Relations for Galaxies

DOI: 10.4236/jamp.2024.121023, PP. 284-304

Keywords: Galactic Dynamics, Faber-Jackson Relation, Tully-Fisher Relation, Dark Matter, MOND

Full-Text   Cite this paper   Add to My Lib

Abstract:

The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty years, various versions of the modified scenario have been proposed to simulate the effects of missing mass. These schemes replace the dynamic effect of dark matter by introducing some tiny extra force terms in the dynamic equations. Such extra forces have mainly interactions on large scales of galaxies, such as fitting the Tully-Fisher relation or asymptotically flat rotation curves. The discussion in this paper shows that the evidence of taking the modified schemes as fundamental theory is still insufficient. In this paper, we display a system of simplified galactic dynamical equations derived from weak field and low-speed approximations of Einstein field equations, and then we use it to discuss two important empirical relations in galactic dynamics, namely the Faber-Jackson relation and Tully-Fisher relation, as well as the related fundamental plane. These discussions provide a reference scheme for improving the dispersion of the empirical relations, and also provide a theoretical foundation to analyze the properties of dark matter and galactic structures.

References

[1]  Bertone, G. and Tait, T.M. (2018) A New Era in the Search for Dark Matter. Nature, 562, 51-56.
https://doi.org/10.1038/s41586-018-0542-z
[2]  Martens, N.C., Sahuquillo, M.á.C., Scholz, E., Lehmkuhl, D. and Krämer, M. (2022) Integrating Dark Matter, Modified Gravity, and the Humanities. Studies in History and Philosophy of Science, 91, A1-A5.
https://doi.org/10.1016/j.shpsa.2021.08.015
[3]  Zwicky, F. (1933) Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica Acta, 6, 110-127.
[4]  Zwicky, F. (1937) On the Masses of Nebulae and of Clusters of Nebulae. The Astrophysical Journal, 86, 217-246.
https://doi.org/10.1086/143864
[5]  Rubin, V.C. and Ford Jr., W.K. (1970) Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. The Astrophysical Journal, 159, 379-403.
https://doi.org/10.1086/150317
[6]  Corbelli, E. and Salucci, P. (2000) The Extended Rotation Curve and the Dark Matter Halo of M33. Monthly Notices of the Royal Astronomical Society, 311, 441-447.
https://doi.org/10.1046/j.1365-8711.2000.03075.x
[7]  Undagoitia, T.M. and Rauch, L. (2015) Dark Matter Direct-Detection Experiments. Journal of Physics G: Nuclear and Particle Physics, 43, Article ID: 013001.
https://doi.org/10.1088/0954-3899/43/1/013001
[8]  Roszkowski, L., Sessolo, E.M. and Trojanowski, S. (2018) WIMP Dark Matter Candidates and Searches-Current Status and Future Prospects. Reports on Progress in Physics, 81, Article ID: 066201.
https://doi.org/10.1088/1361-6633/aab913
[9]  Bertone, G., Hooper, D. and Silk, J. (2005) Particle Dark Matter: Evidence, Candidates and Constraints. Physics Reports, 405, 279-390.
https://doi.org/10.1016/j.physrep.2004.08.031
[10]  Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F.D., Anthony, et al. (2017) First Dark Matter Search Results from the XENON1T Experiment. Physical Review Letters, 119, Article ID: 181301.
https://doi.org/10.1103/PhysRevLett.119.181301
[11]  Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., et al. (2018) Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121, Article ID: 111302.
[12]  Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. Astrophysical Journal, 270, 365-370.
https://doi.org/10.1086/161130
[13]  Milgrom, M. (1983) A Modification of the Newtonian Dynamics—Implications for Galaxies. Astrophysical Journal, 270, 371-383.
https://doi.org/10.1086/161131
[14]  Milgrom, M. (2001) MOND—A Pedagogical Review. ArXiv: astro-ph/0112069.
[15]  Bekenstein, J. and Milgrom, M. (1984) Does the Missing Mass Problem Signal the Breakdown of Newtonian Gravity? Astrophysical Journal, 286, 7-14.
https://doi.org/10.1086/162570
[16]  Sanders, R.H. and McGaugh, S.S. (2002) Modified Newtonian Dynamics as an Alternative to Dark Matter. Annual Review of Astronomy and Astrophysics, 40, 263-317.
https://doi.org/10.1146/annurev.astro.40.060401.093923
[17]  Lelli, F., McGaugh, S.S., Schombert, J.M., Desmond, H. and Katz, H. (2019) The Baryonic Tully-Fisher Relation for Different Velocity Definitions and Implications for Galaxy Angular Momentum. Monthly Notices of the Royal Astronomical Society, 484, 3267-3278.
https://doi.org/10.1093/mnras/stz205
[18]  McGaugh, S.S., Lelli, F. and Schombert, J.M. (2016) Radial Acceleration Relation in Rotationally Supported Galaxies. Physical Review Letters, 117, Article ID: 201101.
https://doi.org/10.1103/PhysRevLett.117.201101
[19]  McGaugh, S. (2020) Predictions and Outcomes for the Dynamics of Rotating Galaxies. Galaxies, 8, Article 35.
https://doi.org/10.3390/galaxies8020035
[20]  Islam, T. and Dutta, K. (2020) Acceleration Relations in the Milky Way as Differentiators of Modified Gravity Theories. Physical Review D, 101, Article ID: 084015.
https://doi.org/10.1103/PhysRevD.101.084015
[21]  Gentile, G. (2008) MOND and the Universal Rotation Curve: Similar Phenomenologies. The Astrophysical Journal, 684, 1018-1025.
https://doi.org/10.1086/590048
[22]  Dutton, A.A., Maccio, A.V., Obreja, A. and Buck, T. (2019) NIHAO-XVIII. Origin of the MOND Phenomenology of Galactic Rotation Curves in a ΛCDM Universe. Monthly Notices of the Royal Astronomical Society, 485, 1886-1899.
https://doi.org/10.1093/mnras/stz531
[23]  Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. The Astronomical Journal, 152, Article No. 157.
https://doi.org/10.3847/0004-6256/152/6/157
[24]  Binney, B. and Tremaine, S. (2008) Galactic Dynamics. 2nd Edition, Princeton University Press, Princeton.
https://doi.org/10.1515/9781400828722
[25]  Gu, Y.Q. (2022) Simplification of Galactic Dynamic Equations. Symmetry, 14, Article 407.
https://doi.org/10.3390/sym14020407
[26]  Dodelson, S. (2011) The Real Problem with MOND. International Journal of Modern Physics D, 20, 2749-2753.
https://doi.org/10.1142/S0218271811020561
[27]  Duerr, P.M. and William, J.W. (2023) Methodological Reflections on the MOND/Dark Matter Debate. Studies in History and Philosophy of Science, 101, 1-23.
https://doi.org/10.1016/j.shpsa.2023.07.001
[28]  Chan, M.H. (2013) Reconciliation of Modified Newtonian Dynamics and Dark Matter Theory. Physical Review D, 88, Article ID: 103501.
https://doi.org/10.1103/PhysRevD.88.103501
[29]  Chan, M.H. and Law, K.C. (2023) A Severe Challenge to the Modified Newtonian Dynamics Phenomenology in Our Galaxy. The Astrophysical Journal, 957, Article No. 24.
https://doi.org/10.3847/1538-4357/acf8c0
[30]  Brownstein, J.R. and Moffat, J.W. (2006) Galaxy Cluster Masses without Non-Baryonic Dark Matter. Monthly Notices of the Royal Astronomical Society, 367, 527-540.
https://doi.org/10.1111/j.1365-2966.2006.09996.x
[31]  Brownstein, J.R. and Moffat, J.W. (2006) Galaxy Rotation Curves without Nonbaryonic Dark Matter. Astrophysical Journal, 636, 721-741.
https://doi.org/10.1086/498208
[32]  Moffat, J.W. and Toth, V.T. (2009) Fundamental Parameter-Free Solutions in Modified Gravity. Classical and Quantum Gravity, 26, Article ID: 085002.
https://doi.org/10.1088/0264-9381/26/8/085002
[33]  Moffat, J.W. and Rahvar, S. (2013) The MOG Weak Field Approximation and Observational Test of Galaxy Rotation Curves. Monthly Notices of the Royal Astronomical Society, 436, 1439-1451.
https://doi.org/10.1093/mnras/stt1670
[34]  Zhu, Y., Ma, H.X., Dong, X.B., Huang, Y., Mistele, T., Peng, B. and Jin, X. (2023) How Close Dark Matter Haloes and MOND Are to Each Other: Three-Dimensional Tests Based on Gaia DR2. Monthly Notices of the Royal Astronomical Society, 519, 4479-4498.
https://doi.org/10.1093/mnras/stac3483
[35]  LIGO Scientific Collaboration and Virgo Collaboration, et al. (2017) Multi-Messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters, 848, L12.
[36]  LIGO Scientific Collaboration and Virgo Collaboration, et al. (2017) A Gravitational-Wave Standard Siren Measurement of the Hubble Constant. Nature, 551, 85-88.
https://doi.org/10.1038/nature24471
[37]  Virgo and LIGO Collaborations (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. PRL, 119, Article ID: 161101.
[38]  LIGO Scientific Collaboration and Virgo Collaboration, et al. (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters, 848, L13.
[39]  Gu, Y.-Q. (2019) Stationary Spiral Structure and Collective Motion of the Stars in a Spiral Galaxy. In: Christianto, V. and Smarandache, F., Eds., Old Problems and New Horizons in World Physics, Nova Science Publishers, New York, 323.
[40]  Gu, Y.Q. (2020) Clifford Algebra and Unified Field Theory (Ch. 8). LAP Lambert Academic Publishing, Chisinau.
[41]  Gu, Y.Q. (2021) Theory of Spinors in Curved Space-Time. Symmetry, 13, Article 1931.
https://doi.org/10.3390/sym13101931
[42]  Gu, Y.Q. (2021) Dynamical Reason for a Cyclic Universe. Symmetry, 13, Article 2272.
https://doi.org/10.3390/sym13122272
[43]  Lin, C.C. and Shu, F.H. (1964) On the Spiral Structure of Disk Galaxies. Astrophysical Journal, 140, 646-655.
https://doi.org/10.1086/147955
[44]  Faber, S.M. and Jackson, R.E. (1976) Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies. Astrophysical Journal, 204, 668-683.
https://doi.org/10.1086/154215
[45]  Morgan, W.W. and Mayall, N.U. (1957) A Spectral Classification of Galaxies. Publications of the Astronomical Society of the Pacific, 69, 291-303.
https://doi.org/10.1086/127075
[46]  Watkins, L.L., Evans, N.W. and An, J.H. (2010) The Masses of the Milky Way and Andromeda Galaxies. Monthly Notices of the Royal Astronomical Society, 406, 264-278.
https://doi.org/10.1111/j.1365-2966.2010.16708.x
[47]  An, J.H. and Evans, N.W. (2011) Modified Virial Formulae and the Theory of Mass Estimators. Monthly Notices of the Royal Astronomical Society, 413, 1744-1752.
https://doi.org/10.1111/j.1365-2966.2011.18251.x
[48]  Van der Marel, R.P. and Guhathakurta, P. (2008) M31 Transverse Velocity and Local Group Mass from Satellite Kinematics. The Astrophysical Journal, 678, 187-199.
https://doi.org/10.1086/533430
[49]  Djorgovski, S. and Davis, M. (1987) Fundamental Properties of Elliptical Galaxies. Astrophysical Journal, 313, 59-68.
https://doi.org/10.1086/164948
[50]  Sanders, R.H. (2010) The Universal Faber-Jackson Relation. Monthly Notices of the Royal Astronomical Society, 407, 1128-1134.
https://doi.org/10.1111/j.1365-2966.2010.16957.x
[51]  Hyde, J.B. and Bernardi, M. (2009) The Luminosity and Stellar Mass Fundamental Plane of Early-Type Galaxies. Monthly Notices of the Royal Astronomical Society, 396, 1171-1185.
https://doi.org/10.1111/j.1365-2966.2009.14783.x
[52]  Bernardi, M., Sheth, R.K., Annis, J., Burles, S., Eisenstein, D.J., Finkbeiner, D.P. and York, D.G. (2003) Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane. The Astronomical Journal, 125, 1866-1881.
[53]  La Barbera, F., Busarello, G., Merluzzi, P., De La Rosa, I.G., Coppola, G. and Haines, C.P. (2008) The SDSS-UKIDSS Fundamental Plane of Early-Type Galaxies. The Astrophysical Journal, 689, 913-918.
https://doi.org/10.1086/592769
[54]  Jeong, H., Yi, S.K., Bureau, M., Davies, R.L., Falcón-Barroso, J., Van De Ven, G. and Van Den Bosch, R.C. (2009) The SAURON Project-XIII. SAURON-GALEX Study of Early-Type Galaxies: The Ultraviolet Colour-Magnitude Relations and Fundamental Planes. Monthly Notices of the Royal Astronomical Society, 398, 2028-2048.
https://doi.org/10.1111/j.1365-2966.2009.15238.x
[55]  Focardi, P. and Malavasi, N. (2012) The Effect of the Environment on the Faber-Jackson Relation. The Astrophysical Journal, 756, Article No. 117.
https://doi.org/10.1088/0004-637X/756/2/117
[56]  Tully, R.B. and Fisher, J.R. (1977) A New Method of Determining Distance to Galaxies. Astronomy & Astrophysics, 54, 661-673.
[57]  Mould, J., Aaronson, M. and Huchra, J. (1980) A Distance Scale from the Infrared Magnitude/HI Velocity-Width Relation. II. The Virgo Cluster. Astrophysical Journal, Part 1, 238, 458-470.
https://doi.org/10.1086/158002
[58]  Aaronson, M. and Mould, J. (1983) A Distance Scale from the Infrared Magnitude/HI Velocity-Width Relation. IV. The Morphological Type Dependence and Scatter in the Relation; the Distances to Nearby Groups. Astrophysical Journal, Part 1, 265, 1-17.
https://doi.org/10.1086/160648
[59]  Einasto, J., Kaasik, A. and Saar, E. (1974) Dynamic Evidence on Massive Coronas of Galaxies. Nature, 250, 309-310.
https://doi.org/10.1038/250309a0
[60]  Honma, M. and Sofue, Y. (1996) Mass of the Galaxy Inferred from Outer Rotation Curve. Publications of the Astronomical Society of Japan, 48, L103-L106.
https://doi.org/10.1093/pasj/48.6.L103
[61]  McQuinn, K.B., Adams, E.A., Cannon, J.M., Fuson, J., Skillman, E.D., Brooks, A. and Talluri, A.K. (2022) The Turndown of the Baryonic Tully-Fisher Relation and Changing Baryon Fraction at Low Galaxy Masses. The Astrophysical Journal, 940, Article No. 8.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413