全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Pionic Deuterium and the Pion Tetrahedron Vacuum Polarization

DOI: 10.4236/jhepgc.2024.101024, PP. 329-345

Keywords: Pionic Deuterium (πD), Yukawa Interaction, QCD Vacuum, Double-Well Potential, Chiral Perturbation Theory, Vacuum Polarization, Gravitational Waves

Full-Text   Cite this paper   Add to My Lib

Abstract:

A double-well potential model is proposed for the pionic deuterium that enables to calculate the energy split, the potential barrier height and estimate the pion tetrahedron edge length. We propose that pion tetrahedrons, πTd = ud~, play a central role in the Yukawa interaction by enabling quark exchange reactions between protons and neutrons by tunneling through a potential barrier. A vacuum polarization Feynman diagram is proposed for the πTd having chains of fermion loops for the two valence quarks and anti-quarks connected by gluons. With a higher order vacuum polarization diagram, the d and u quark loops are interleaved and the chiral symmetry is broken dynamically. The proposed πTd vacuum polarization integral does not diverge in both the IR and UV limits and vanishes in the limit of an infinite pion tetrahedron condensate. We propose a new Delbruck scattering Feynman diagram that includes d and u quark and anti-quark interleaved loops. We further propose that conversion of gravitons to photons may occur via quark and anti-quark loops that describe the pion tetrahedrons dynamics in the vacuum and may also transfer gravitational waves.

References

[1]  Yukawa, H. (1955) On the Interaction of Elementary Particles. I. Progress of Theoretical Physics Supplement, 1, 1-10.
https://doi.org/10.1143/PTPS.1.1
[2]  Weinberger, S. (1965) A Model of Leptons.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264
[3]  Strauch, Th., et al. (2010) Pionic Deuterium.
https://arxiv.org/pdf/1011.2415.pdf
[4]  Rovelli, C. (2004) Quantum Gravity. Cambridge University Press, Cambridge.
http://alpha.sinp.msu.ru/~panov/RovelliBook.pdf
https://doi.org/10.1017/CBO9780511755804
[5]  Rom, R. (2023) The Quantum Chromodynamics Gas Density Drop and the General Theory of Relativity Ether. Journal of High Energy Physics, Gravitation and Cosmology, 9, 445-454.
https://www.scirp.org/journal/paperinformation.aspx?paperid=124153
[6]  Rom, R. (2023) Matter Reactors. Journal of High Energy Physics, Gravitation and Cosmology, 9, 455-460.
https://www.scirp.org/journal/paperinformation.aspx?paperid=124154
[7]  Rom, R. (2023) The Principal Role of Antimatter. Journal of High Energy Physics, Gravitation and Cosmology, 9, 461-466.
https://www.scirp.org/journal/paperinformation.aspx?paperid=124156
[8]  Rom, R. (2023) The Black Hole Spray and the Cosmic Web. Journal of High Energy Physics, Gravitation and Cosmology, 9, 519-523.
https://www.scirp.org/journal/paperinformation.aspx?paperid=124288
[9]  Rom, R. (2023) The QCD Ground State Chiral Tetrahedron Symmetry. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1161-1180.
https://www.scirp.org/journal/paperinformation.aspx?paperid=128344
[10]  Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977) Quantum Mechanics. Volume I, John Wiley & Sons Ltd., New York, 455-469.
[11]  Aguilar, A.C., et al. (2019) Pion and Kaon Structure at the Electron-Ion Collider.
https://arxiv.org/abs/1907.08218
[12]  Yang, Y.B. (2018) Proton Mass Decomposition from the QCD Energy Momentum Tensor. Physical Review Letters, 121, Article ID: 212001.
https://arxiv.org/abs/1808.08677
https://doi.org/10.1103/PhysRevLett.121.212001
[13]  Schwartz, M. (2012) III-2: Vacuum Polarization.
https://canvas.harvard.edu/files/936398/download?download_frd=1&verifier=PAHa18X0trEAYjwcsmQXrhusjECF3ct6JNxDQ41E
[14]  Leuchs, G., Hawton, M. and Sánchez-Soto, L.L. (2020) QED Response of the Vacuum. Physics, 2, 14-21.
https://www.mdpi.com/2624-8174/2/1/2
https://doi.org/10.3390/physics2010002
[15]  Andela, S.P. (2022) A QCD Investigation of the Proton Mass.
https://fse.studenttheses.ub.rug.nl/28863/1/A%20QCD%20Investigation%20of%20the%20Proton%20Mass.pdf
[16]  Lednicky, R. (2008) Finite-Size Effect on Two-Particle Production in Continuous and Discrete Spectrum.
https://arxiv.org/pdf/nucl-th/0501065.pdf
[17]  Yan, B. and Felser, C. (2017) Topological Materials: Weyl Semimetals. Annual Review of Condensed Matter Physics, 8, 337-354.
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031016-025458#:~:text=The%20TaAs%20family%20is%20the,MoTe2%2C%20and%20related%20compounds
[18]  Afanasyev, L.G., et al. (1993) Observations of Atoms Consisting of π+ and π- Mesons. Physics Letters B, 308, 200-206.
https://doi.org/10.1016/0370-2693(93)90622-O
https://www.sciencedirect.com/science/article/abs/pii/037026939390622O?via%3Dihub
[19]  Guo, F.K., Liu, X.H. and Sakai, S. (2020) Threshold Cusps and Triangle Singularities in Hadronic Reactions. Progress in Particle and Nuclear Physics, 112, Article ID: 103757.
https://arxiv.org/abs/1912.07030
https://doi.org/10.1016/j.ppnp.2020.103757
[20]  Adeva, B., et al. (2005) First Measurement of the π+π- Atom Lifetime. Physics Letters B, 619, 50-60.
https://arxiv.org/abs/hep-ex/0504044
[21]  Afanasyev, L.G., Gevorkyan, S.R. and Voskresenskaya, O.O. (2019) Dimesoatom Breakup in the Coulomb Field.
https://arxiv.org/pdf/1908.05331.pdf
[22]  Dunne, G.V. (2012) The Heisenberg-Euler Effective Action: 75 Years on. International Journal of Modern Physics A, 27, Article ID: 1260004.
https://arxiv.org/abs/1202.1557
https://doi.org/10.1142/S0217751X12600044
[23]  A Review of Delbruck Scattering, Chapter 1, University of North Bengal.
https://ir.nbu.ac.in/bitstream/123456789/1500/6/06_chapter_01.pdf
[24]  Bern, Z., De Freitas, A., Dixon, L., Ghinculov, A. and Wong, H.L. (2001) QCD and QED Corrections to Light-by-Light Scattering. Journal of High Energy Physics, 111, 31. https://arxiv.org/abs/hep-ph/0109079
https://doi.org/10.1088/1126-6708/2001/11/031
[25]  Jones, P. and Singleton, D. (2018) Interaction between Gravitational Radiation and Electromagnetic Radiation. International Journal of Modern Physics D, 28, Article ID: 1930010.
https://arxiv.org/abs/1811.03002
[26]  Bjerrum-Bohr, N.E.J., et al. (2015) Graviton-Photon Scattering. Physical Review D, 91, Article ID: 064008.
https://arxiv.org/abs/1410.4148
https://doi.org/10.1103/PhysRevD.91.064008

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413