全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Extremal Universe Exact Solution from Einstein’s Field Equation Gives the Cosmological Constant Directly

DOI: 10.4236/jhepgc.2024.101027, PP. 386-397

Keywords: General Relativity Theory, Cosmological Constant Extremal Solution, Reissner-Nordström, Kerr, Kerr-Newman

Full-Text   Cite this paper   Add to My Lib

Abstract:

Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lema?tre-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordstr?m, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant; instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation.

References

[1]  Reissner, H. (1916) Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie. Annalen der Physik, 355, 106-120.
https://doi.org/10.1002/andp.19163550905
[2]  Nordström, G. (1918) On the Energy of the Gravitation Field in Einstein’s Theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 20, 1238.
[3]  Einstein, A. (1916) Die grundlage der allgemeinen relativitätstheorie. Annalen der Physics, 354, 769-822.
https://doi.org/10.1002/andp.19163540702
[4]  Zee, A. (2013) Einstein Gravity in a Nutshell. Princeton University Press, Princeton.
[5]  Aretakis, S. (2018) Dynamics of Extremal Black Holes. Springer Verlag, Berlin.
https://doi.org/10.1007/978-3-319-95183-6
[6]  Kerr, R.P. (1963) Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters, 11, 237-238.
https://doi.org/10.1103/PhysRevLett.11.237
[7]  Newman, E.T. and Janis, A.I. (1965) Note on the Kerr Spinning-Particle Metric. Journal of Mathematical Physics, 6, 915-917.
https://doi.org/10.1063/1.1704350
[8]  Newman, E., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965) Metric of a Rotating, Charged Mass. Journal of Mathematical Physics, 6, 918-919.
https://doi.org/10.1063/1.1704351
[9]  Guidry, M. (2019) Modern General Relativity. Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781108181938
[10]  Schwarzschild, K. (1916) Über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 424.
[11]  Augousti, A.T. and Radosz, A. (2006) An Observation on the Congruence of the Escape Velocity in Classical Mechanics and General Relativity in a Schwarzschild Metric. European Journal of Physics, 376, 331-335.
https://doi.org/10.1088/0143-0807/27/2/015
[12]  Pathria, R.K. (1972) The Universe as a Black Hole. Nature, 240, 298-299.
https://doi.org/10.1038/240298a0
[13]  Stuckey, W.M. (1994) The Observable Universe inside a Black Hole. American Journal of Physics, 62, 788-795.
https://doi.org/10.1119/1.17460
[14]  Schutz, B. (2003) Gravity from the Ground up. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511807800
[15]  Friedmann, A. (1922) Über die krüng des Raumes. Zeitschrift für Physik, 10, 377.
https://doi.org/10.1007/BF01332580
[16]  Monerat, G.A., Filho, F.L.G., Silva, E.V.C., et al. (2010) The Planck Era with a Negative Cosmological Constant and Cosmic Strings. Physics Letters A, 374, 4741-4745.
https://doi.org/10.1016/j.physleta.2010.09.067
[17]  Prokopec, T. (2011) Negative Energy Cosmology and the Cosmological Constant.
[18]  Maeda, K. and Ohta, N. (2014) Cosmic Acceleration with a Negative Cosmological Constant in Higher Dimensions. Journal of High Energy Physics, 2014, Article No. 95.
https://doi.org/10.1007/JHEP06(2014)095
[19]  Visinelli, L., Vagnozzi, S. and Danielsson, U. (2019) Revisiting a Negative Cosmological Constant from Low-Redshift Data. Symmetry, 11, Article No. 1035.
https://doi.org/10.3390/sym11081035
[20]  Calderón, R., Gannouji, R., L’Huillier, B. and Polarski, D. (2021) Negative Cosmological Constant in the Dark Sector? Physical Review D, 103, Article ID: 023526.
https://doi.org/10.1103/PhysRevD.103.023526
[21]  Benizri, L. and Troost, J. (2023) More on Pure Gravity with a Negative Cosmological Constant. Journal of High Energy Physics, 2023, Article No. 93.
https://doi.org/10.1007/JHEP09(2023)093
[22]  Sen, A.A., Adil, S.A. and Sen, S. (2023) Do Cosmological Observations Allow a Negative λ? Monthly Notices of the Royal Astronomical Society, 518, 1098-1105.
https://doi.org/10.1093/mnras/stac2796
[23]  Einstein, A. (1917) Cosmological Considerations in the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss, Berlin (Math. Phys.), 142.
[24]  Gamow, G. (1970) My World Line: An Informal Autobiography. Physics Today, 24, 51-52.
https://doi.org/10.1063/1.3022626
[25]  Perlmutter, S., et al. (1999) Measurements of ω and λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, Article No. 565.
https://doi.org/10.1086/307221
[26]  Reiss, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
[27]  Wald, R.M. (1984) General Relativity. The University of Chicago Press, Chicago.
https://doi.org/10.7208/chicago/9780226870373.001.0001
[28]  Schneider, P. (2015) Extragalactic Astronomy and Cosmology. Springer, Berlin.
https://doi.org/10.1007/978-3-642-54083-7
[29]  Coulomb, C.A. (1785) Premier mémoire sur l’électricité et le magnétisme. Histoire de Académie Royale des Sciences, 569-577.
[30]  Newton, I. (1686) Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiae ac Typis Josephi Streater, London.
[31]  Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften, Berlin.
https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up
[32]  Planck, M. (1906) Vorlesungen über die Theorie der Wärmestrahlung. J.A. Barth, Leipzig, 163.
[33]  Eddington, A.S. (1918) Report on the Relativity Theory of Gravitation. The Physical Society of London, Fleetway Press, London.
[34]  Adler, S.L. (2010) Six Easy Roads to the Planck Scale. American Journal of Physics, 78, 925-932.
https://doi.org/10.1119/1.3439650
[35]  Hossenfelder, S. (2012) Can We Measure Structures to a Precision Better than the Planck Length? Classical and Quantum Gravity, 29, Article ID: 115011.
https://doi.org/10.1088/0264-9381/29/11/115011
[36]  Hossenfelder, S. (2013) Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16, Article No. 2.
https://doi.org/10.12942/lrr-2013-2
[37]  Haug, E.G. (2023) Different Mass Definitions and Their Pluses and Minuses Related to Gravity. Foundations, 3, 199-219.
https://doi.org/10.3390/foundations3020017
[38]  Haug, E.G. (2023) Quantized Newton and General Relativity Theory.
https://doi.org/10.20944/preprints202309.1399.v1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133