全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

型为tr的5-半循环可分组设计
Semi-Cyclic Group Divisible Design of Type tr with Block Size 5

DOI: 10.12677/PM.2024.141034, PP. 335-340

Keywords: 半循环可分组设计,循环差阵,循环填充,递归构造
Semi-Cyclic Group Divisible Design
, Cyclic Difference Matrix, Cyclic Packing, Recursive Construction

Full-Text   Cite this paper   Add to My Lib

Abstract:

半循环可分组设计在组合编码中有着广泛的应用。根据半循环可分组设计的定义,给出型为tr,区组长度为5的半循环可分组设计存在的必要条件。再利用循环差阵、t-正则的循环填充及两种递归构造法,得到了型为tr,区组长度为5的半循环可分组设计存在的若干充分条件。
Semi-cyclic group divisible design has many applications in combinatorial coding. The necessary condition of semi-cyclic group divisible design of type tr with block size 5 was obtained from the definition. In addition, several spectrums of semi-cyclic group divisible design with block size 5 were obtained by employing cyclic difference matrix, t-regular cyclic packing with the aid of two recursive constructions.

References

[1]  Yin, J.X. (2002) A General Construction for Optimal Cyclic Packing Designs. Journal of Combinatorial Theory (Series A), 97, 272-284.
https://doi.org/10.1006/jcta.2001.3215
[2]  Gallant, R.P., Jiang, Z. and Ling, A.C.H. (1999) The Spectrum of Cyclic Group Divisible Designs with Block Size Three. Journal of Combinatorial Design, 7, 95-105.
https://doi.org/10.1002/(SICI)1520-6610(1999)7:2%3C95::AID-JCD2%3E3.0.CO;2-K
[3]  Wang, J.M. and Yin, J.X. (2010) Two-Dimensional Optical Orthogonal Codes and Semicyclic Group Divisible Designs. IEEE Transactions on Information Theory, 56, 2177-2187.
https://doi.org/10.1109/TIT.2010.2043772
[4]  Wang, K. and Wang, J.M. (2012) Semicyclic 4-GDDs and Related Two-Dimensional Optical Orthogonal Codes. Designs, Codes and Cryptog-raphy, 63, 305-319.
https://doi.org/10.1007/s10623-011-9556-3
[5]  Wang, L.D., Feng, T., Li, Y.T., et al. (2023) Construction for Multichannel Conflict-Avoiding Codes with AM-OPPTS Restriction. IEEE Transactions on Infor-mation Theory, 69, 7398-7413.
https://doi.org/10.1109/TIT.2023.3299307
[6]  Ge, G.N. and Yin, J.X. (2001) Constructions for Optimal Optical Orthogonal Codes. IEEE Transactions on Information Theory, 47, 2998-3004.
https://doi.org/10.1109/18.959278
[7]  Hanani, H. (1975) Balanced Incomplete Block Designs and Related Designs. Discrete Mathematics, 11, 255-369.
https://doi.org/10.1016/0012-365X(75)90040-0
[8]  Pan, R., Abel, R.J.R., Bunjamin, Y.A., et al. (2022) Differ-ence Matrices with Five Rows over Finite Abelian Groups. Designs, Codes and Cryptography, 90, 367-386.
https://doi.org/10.1007/s10623-021-00981-6
[9]  Ge, G.N. (2005) On -Difference Matrices. Discrete Mathematics, 301, 164-174.
https://doi.org/10.1016/j.disc.2005.07.004
[10]  Yin, J.X. (1998) Some Combinatorial Constructions for Optical Orthogonal Codes. Discrete Mathematics, 185, 201-219.
https://doi.org/10.1016/S0012-365X(97)00172-6
[11]  Chang, Y.X. and Ji, L.J. (2004) Optimal Opti-cal Orthogonal Codes. Journal of Combinatorial Designs, 12, 346-361.
https://doi.org/10.1002/jcd.20011
[12]  Ma, S. and Chang, Y.X. (2004) A New Class of Optimal Optical Orthogonal Codes with Weight Five. IEEE Transactions on Information Theory, 50, 1848-1850.
https://doi.org/10.1109/TIT.2004.831845
[13]  Ma, S. and Chang, Y.X. (2005) Constructions of Optimal Optical Orthogonal Codes with Weight Five. Journal of Combinatorial Designs, 13, 54-69.
https://doi.org/10.1002/jcd.20022

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133