全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金属/绝缘层/半导体纳米结构内电子传输的光电子模型的构建
Construction of Photoelectron Models for Electron Transfer within Metal/Insulating Layer/Semiconductor Nanostructures

DOI: 10.12677/OE.2023.134012, PP. 103-111

Keywords: 数学物理模型,电子传输,COMSOL Multiphysics,金属/半导体界面
Mathematical and Physical Model
, Electron Transfer, COMSOL Multiphysics, Metal/Semiconductor Interface

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于金属/半导体纳米器件内的电子悖向运动且迁移路径复杂的问题,绝缘层被引入成为“单向壁垒”促使热电子单向隧穿且阻隔光生电子的传递。为有效表征局域表面等离激元共振效应的产生和激发出的热电子的单向隧穿,该文基于传统的漂移-扩散方程,解析半导体-光电子物理场的耦合过程,结合Wentzel-Kramers-Brillouin隧穿条件,建立电子隧穿的载流子浓度方程组,为界面电荷传输的新型可视化表征方法的提出奠定了理论基础。
Based on the problem that electrons in the metal/semiconductor nanodevice move in opposite directions and the migration path is complex, the insulating layer is introduced as a “unidirectional barrier” to facilitate the unidirectional tunneling of hot electrons and block the transfer of photogenerated electrons. To effectively characterize the generation of localized surface plasmon resonance effect and the unidirectional tunneling of excited hot electrons, based on the traditional drift-diffusion equation, the coupling process of semiconductor-photonic physical field is analyzed. At the same time, the Wentzel-Kramers-Brillouin tunneling condition is combined to establish the carrier concentration equation of electron tunneling, which lays a theoretical foundation for the new visual characterization method of interface charge transport.

References

[1]  Clough, R.W. (1960) The Finite Element Method in Plane Stress Analysis. 2nd Conference on Electronic Computation, Pittsburg, 1960, 345-378.
[2]  Zimmerman, W.B.J. COMSOL Multiphysics有限元法多物理场建模与分析[M]. 北京: 人民交通出版社, 2007.
[3]  李淑君, 王惠泉, 赵文玉, 等. 基于COMSOL多物理场耦合仿真建模方法研究[J]. 机械工程与自动化, 2014(4): 19-23.
[4]  Kolb, D.M., Przasnyski, M. and Gerischer, H. (1974) Optical Interfacial Electron-Transfer between Metal Adatoms and a Semiconductor Electrode. Zeitschrift Fur PhysikalischeChemie-Frankfurt, 93, 1-14.
https://doi.org/10.1524/zpch.1974.93.1-6.001
[5]  Elsharif, A.M. (2018) The Effect of the Electron Tunneling on the Photoelectric Hot Electrons Generation in Metallic-Semiconductor Nanostructures. Chemical Physics Letters, 691, 224-230.
https://doi.org/10.1016/j.cplett.2017.11.004
[6]  Rossani, A. (2018) Generation-Recombination Models in the Matrix Kinetic Approach to Spintronics. Journal of Computational and Theoretical Transport, 47, 28-45.
https://doi.org/10.1080/23324309.2017.1419976
[7]  Landé, A. (1926) Zur Quantentheorie der Strahlung. Physikalische Zeitschrift, 35, 317-322.
https://doi.org/10.1007/BF01380146
[8]  Yariv, A. (2007) Photonics: Optical Electronics in Modern Communications. 6th Edition, Oxford University Press, New York.
[9]  Knezevic-Miljanovic, J. (2013) On a Shockley-Read-Hall Model for Semiconductors. Theoretical and Applied Mechanics, 40, 65-70.
https://doi.org/10.2298/TAM1301065K
[10]  Kelly, K.L., Coronado, E., Zhao, L.L., et al. (2003) The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 107, 668-677.
https://doi.org/10.1021/jp026731y
[11]  Peiris, S., Mcmurtrie, J. and Zhu, H.Y. (2016) Metal Nanoparticle Photocatalysts: Emerging Processes for Green Organic Synthesis. Catalysis Science & Technology, 6, 320-338.
https://doi.org/10.1039/C5CY02048D
[12]  Ritchie, R.H. (1957) Plasma Losses by Fast Electrons in Thin-Films. Physical Review, 106, 874-881.
https://doi.org/10.1103/PhysRev.106.874
[13]  Yang, K., East, J.R. and Haddad, G.I. (1993) Numerical Modeling of Abrupt Heterojunctions Using a Thermionic-Field Emission Boundary Condition. Solid-State Electronics, 36, 321-330.
https://doi.org/10.1016/0038-1101(93)90083-3
[14]  Okuto, Y. and Crowell, C.R. (1975) Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid State Electronics, 18, 161-168.
https://doi.org/10.1016/0038-1101(75)90099-4
[15]  Nguyen, V.H. et al. (2018) Electron Tunneling through Grain Boundaries in Transparent Conductive Oxides and Implications for Electrical Conductivity: The Case of ZnO: Al Thin Films. Materials Horizons, 5, 715-726.
https://doi.org/10.1039/C8MH00402A
[16]  Duke, C.B. and Lambe, J. (1973) Tunneling in Solids. Physics Today, 26, 63-64.
https://doi.org/10.1063/1.3128102

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133