全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

意外事故下控制鼓和安全鼓对空间核反应堆反应性影响研究
Research on the Effects of Control Drum and Safety Drum on the Reactivity of Space Nuclear Reactors in Accidents

DOI: 10.12677/NST.2024.121008, PP. 70-83

Keywords: 有效中子增殖因子,10B富集度,水和湿沙浸入,控制鼓和安全鼓,临界安全
Effective Neutron Multiplication Factor
, Enrichment of 10B, Immersion of Water and Wet Sand, Control Drum and Safety Drum, Criticality Safety

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间核反应堆电源是未来太空探索能源的必然选择,近几年逐渐成为全球研究的热点。意外事故工况下的临界状况对空间核反应堆的性能和安全至关重要。本文针对TOPAZ-II热离子反应堆,对意外事故工况下反应堆反应性无法满足安全要求的问题,提出了优化方法。研究结果表明:在反射层脱落的事故下,只旋转控制鼓可以使TOPAZ-II处于临界安全状态;在水和湿沙浸入的事故下,keff增长非常快,旋转控制鼓和安全鼓都无法有效降低反应性,反应堆无法达到临界安全状态。针对该问题对控制鼓和安全鼓进行优化。优化的内容为同时改变鼓内含硼组件的厚度和10B的富集度,计算每次改变下keff的值,得到keff与含硼组件厚度和10B富集度之间的关系拟合曲线。根据得到的拟合曲线,建立一套满足安全需求的优化方法。该优化方法可为未来空间反应堆设计提供参考价值。
Space nuclear reactor power supply is an inevitable choice for future space exploration energy, and has gradually become a global research hotpot in recent years. The critical conditions under accidental conditions are crucial for the performance and safety of space nuclear reactors. Aiming at the TOPAZ-II thermionic reactor, this study presents an optimization method for the problem that the reactor reactivity can not meet the safety requirements under accident conditions. The results show that only rotating control drum can make TOPAZ-II in a critical safety state under the accident of reflector falling off; in the event of water and wet sand immersion, keff grows very fast, neither the rotary control drum nor the safety drum can effectively reduce the reactivity, and the reactor cannot reach a critical safety state. To solve this problem, optimize the control drum and safety drum. The content of optimization is to change the thickness of boron components contained in the drum and the enrichment degree of 10B at the same time, calculate the keff value under each change, and obtain the fitting curve of the relationship between keff and the thickness of boron components and the enrichment degree of 10B. According to the fitting curve, establish a set of optimization methods to meet the safety requirements. This optimization method can provide reference value for future space reactor design.

References

[1]  张一帆, 屈伸, 曹良志, 郑友琦. 空间核反应堆安全分析[J]. 上海航天, 2019, 36(6): 121-125.
https://doi.org/10.19328/j.cnki.1006-1630.2019.06.017
[2]  朱安文, 刘磊, 马世俊, 李明. 空间核动力在深空探测中的应用及发展综述[J]. 深空探测学报, 2017, 4(5): 397-404.
https://doi.org/10.15982/j.issn.2095-7777.2017.05.001
[3]  Voss, S.S. (2022) Nuclear Security Considerations for Space Nuclear Power: A Review of Past Programs with Recommendations for Future Criteria. Nuclear Technology, 206, 1097-1108.
https://doi.org/10.1080/00295450.2019.1706378
[4]  闫锋哲, 陈章隆. 空间核反应堆电源发展及应用[J]. 科技创新导报, 2019, 16(12): 21-22+24.
https://doi.org/10.16660/j.cnki.1674-098X.2019.12.021
[5]  胡文军, 陈红永, 陈军红, 等. 空间核动力源的安全性研究进展[J]. 深空探测学报, 2017, 4(5): 453-465.
https://doi.org/10.15982/j.issn.2095-7777.2017.05.006
[6]  Marshall, C.A., Standley, V., Voss, S.S., et al. (2008) Topaz II Preliminary Safety Assessment. AIP Conference Proceedings, 271, 439 p.
[7]  Zakirov, V. and Pavshook, V. (2011) Feasibility of the Recent Russian Nuclear Electric Propulsion Concept: 2010. Nuclear Engineering and Design, 241, 1529-1537.
https://doi.org/10.1016/j.nucengdes.2011.02.010
[8]  刘黎丽, 孙征, 付子明. SPACE-R意外掉落事故的临界安全分析[J]. 原子能科学技术, 2015, 49(9): 1624-1628.
[9]  安伟健, 郭键, 葛攀和, 高剑. Ki-lopower空间堆掉落事故临界安全问题研究[J]. 原子能科学技术, 2021, 55(3): 447-453.
[10]  Glushkov, Y.S., Ponomarev-Stepnoi, N.N., Maiorov, L.V. and Atkinson, C.A. (1995) Intermediate Heterogeneous Assembly with High-ly Enriched Uranium Dioxide (96% 235U) and Zirconium Hydride Moderator, NEA/NSC/DOC(95)03/II. Kurchatov In-stitute, Moscow.
[11]  Brown, D., Chadwick, M., Capote, R., et al. (2018) ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nu-clear Data Sheets, 148, 1-142.
[12]  (1966) Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies. United Nations, New York.
[13]  (1992) Principles Relevant to the Use of Nuclear Sources in Outer Space. United Nations, Vienna.
[14]  陈荫. 空间核反应堆技术[J]. 国外科技动态, 1996(2): 3-5.
[15]  彭磊, 谢奇林, 范晓强, 梁文峰, 任保国. 星球表面探测用核反应堆电源初步研究[J]. 载人航天, 2015, 21(3): 237-242.
https://doi.org/10.16329/j.cnki.zrht.2015.03.006
[16]  郝鹏飞. 基于OpenMC的空间核反应堆临界及安全分析[D]: [硕士学位论文]. 南昌: 东华理工大学, 2022.
https://doi.org/10.27145/d.cnki.ghddc.2022.000507
[17]  孙征, 赵守智, 解家春, 刘兴民. EJ/T 20034-2012. 空间热离子反应堆核动力装置核设计准则[S]. 北京: 国家国防科技工业局, 2013.
[18]  姚成志, 赵守智, 胡古, 解家春. 星球表面用核反应堆临界安全分析[J]. 原子能科学技术, 2018, 52(12): 2176-2180.
[19]  Ma, Q., Sun, P.W., Wei, X.Y. and Jia, Y.W. (2022) Dynamic Model Construction of a Space Thermionic Nuclear Reactor. Applied Thermal Engineering, 212, Article ID: 118644.
https://doi.org/10.1016/j.applthermaleng.2022.118644

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413