全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理与分子对接的芪苈山萸心衰方减轻心肌梗死后心力衰竭大鼠心肌细胞损伤的潜在药效物质研究
Exploring Active Compounds of Qilishanyu Heart Failure Prescription Alleviates Myocardial Cell Injury of Heart Failure after Myocardial Infarction Based on Network Pharmacology and Molecular Docking

DOI: 10.12677/TCM.2024.131035, PP. 219-231

Keywords: 芪苈山萸心衰方,心梗后心衰,网络药理学,分子对接
Qilishanyu Heart Failure Prescription
, Heart Failure after Myocardial Infarction, Pharmacological Network, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨芪苈山萸心衰方治疗心梗后心衰的潜在物质基础。方法:选取SD大鼠,随机分为五组。造模并连续灌胃4周后取心脏组织进行TTC染色和透射电镜观察心脏梗死体积和心肌细胞损伤程度。依据各类数据库查找药物活性成分及靶标,并预测疾病靶点。构建药物–成分–靶点–疾病关系网络、GO和KEGG富集分析,并进行分子对接。结果:模型组梗死体积较假手术组显著增加(P < 0.01),线粒体数量减少,线粒体嵴断裂,肌原纤维结构模糊不清;低、高剂量组较模型组心肌梗死体积均显著减少(P < 0.01),线粒体和肌原纤维结构基本正常。筛选活性成分159个,核心靶点82个;GO富集分析条目588个,KEGG富集分析得信号通路37条;分子对接提示豆甾醇与靶蛋白结合较好。结论:芪苈山萸心衰方中化合物可能通过与关键靶蛋白结合,调节相关信号通路,减轻心肌细胞损伤,发挥治疗作用。
Objective: To explore the effective chemical constituents of Qilishanyu Heart Failure Prescription for treatment of Heart Failure. Methods: SD rats were randomly divided into 5 groups, with 12 rats in each group. After modeling and continuous intragastric administration for 4 weeks, the heart tissues were taken for TTC staining and transmission electron microscopy to observe the volume of cardiac infarction and the extent of myocardial cell damage and the degree of myocardial cell damage was observed by transmission electron microscopy. Active ingredients of drug and the corresponding targets were screened, while the targets of disease n were predicted according to a variety of databases. A network of drug-component-target-disease, GO and KEGG pathway enrichment analysis as well as molecular docking was conducted. Results: Compared with the sham group, the model group was observed with significantly increased myocardial infarction volume (P < 0.01), decreased of heart mitochondria, fractured of the mitochondrial cristae, and the blurred of cardiac myofibrils structure. Compared with model group, myocardial infarction volume of Qilishanyu Heart Failure Prescription formula was significantly reduced in both low and high dose groups (P < 0.01), and the mitochondrial and cardiac myofibrils structures were basically normal. A total of 159 components were screened, with 82 core targets. GO function enrichment analysis revealed 488 items. KEGG pathway enrichment screened 37 signaling pathways. The results of molecular docking showed that stigmasterol had a certain degree of affinity with proteins. Conclusion: The active ingredients in Qilishanyu Heart Failure Prescription may combine with core targets to regulate signaling pathways and reduce myocardial cell damage, which played a significant role in the treatment of Heart Failure.

References

[1]  Savarese, G., Becher, P.M., Lund, L.H., et al. (2023) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287.
https://doi.org/10.1093/cvr/cvac013
[2]  Obokata, M., Reddy, Y. and Borlaug, B.A. (2020) Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC: Cardiovascular Imaging, 13, 245-257.
https://doi.org/10.1016/j.jcmg.2018.12.034
[3]  Henning, R.J. (2020) Diagnosis and Treatment of Heart Failure with Preserved Left Ventricular Ejection Fraction. World Journal of Cardiology, 12, 7-25.
https://doi.org/10.4330/wjc.v12.i1.7
[4]  Chen, J. and Aronowitz, P. (2022) Congestive Heart Failure. Medical Clinics of North America, 106, 447-458.
https://doi.org/10.1016/j.mcna.2021.12.002
[5]  Asano, R., Abshire, M., Dennison-Himmelfarb, C. and Davidson, P.M. (2019) Barriers and Facilitators to a ‘Good Death’ in Heart Failure: An Integrative Review. Collegian, 26, 651-665.
https://doi.org/10.1016/j.colegn.2019.09.010
[6]  Vainio, L.E., Szabó, Z., Lin, R., et al. (2019) Connective Tissue Growth Factor Inhibition Enhances Cardiac Repair and Limits Fibrosis after Myocardial Infarction. JACC: Basic to Translational Science, 4, 83-94.
https://doi.org/10.1016/j.jacbts.2018.10.007
[7]  Ishii, M., Kaikita, K., Sato, K., et al. (2017) Cardioprotective Effects of LCZ696 (Sacubitril/Valsartan) after Experimental Acute Myocardial Infarction. JACC: Basic to Translational Science, 2, 655-668.
https://doi.org/10.1016/j.jacbts.2017.08.001
[8]  高彩, 金连珍, 文磊, 等. 芪苈强心胶囊治疗射血分数保留慢性心力衰竭的临床研究[J]. 中西医结合心脑血管病杂志, 2019, 17(17): 2621-2623.
[9]  Sun, Y.L., Ruan, X.F., Li, Y.P., et al. (2019) Comparative Analysis of Clinical Effects according to Syndrome Differentiation of Qili Qiangxin Capsules on Ischemic Heart Failure: Meta-Analysis. China Journal of Chinese Materia Medica, 44, 4975-4984.
[10]  Han, A.B., Zhang, J., Zhao, M.J., et al. (2016) Effects of Qili Qiangxin Capsule on Lung Structural Remodeling in Heart Failure Rats after Myocardial Infarction and Its Mechanism. Chinese Journal of Integrated Traditional and Western Medicine, 36, 1329-1334.
[11]  刘育英, 张继红. 芪苈山萸心衰方治疗慢性心力衰竭102例[J]. 中医杂志, 2008(7): 630.
[12]  周晓慧, 牛成伟, 曹凯, 等. 丹皮酚通过抑制NF-κB信号通路下调高脂血清诱导的人脐静脉内皮细胞黏附分子的表达[J]. 中国病理生理杂志, 2011, 27(2): 249-253.
[13]  苏真真, 张新庄, 柯志鹏, 等. 银翘解毒软胶囊治疗新型冠状病毒肺炎(COVID-19)的网络药理学研究[J]. 中草药, 2020, 51(9): 2354-2360.
[14]  杨璐, 崔换天, 刘相国, 等. 基于网络药理学的小柴胡汤治疗新型冠状病毒肺炎(COVID-19)发热的可行性探讨[J]. 中草药, 2020, 51(7): 1761-1775.
[15]  秦健峰, 郝二伟, 梁跃辉, 等. 基于文献挖掘与分子对接技术的瑶药“十八钻”抗新型冠状病毒活性成分筛选[J]. 中草药, 2020, 51(8): 2024-2034.
[16]  郭盛, 武文星, 谢红, 等. 基于网络药理学与分子对接技术的补肺活血胶囊用于新型冠状病毒肺炎(COVID-19)恢复期治疗的分子机制研究[J]. 中草药, 2020, 51(9): 2307-2316.
[17]  刘侃玲, 张瑶. 达格列净早期使用对老年急性心肌梗死后心力衰竭患者急性期心功能及炎症因子的影响[J]. 中国临床研究, 2023, 36(10): 1518-1523.
[18]  高风, 郭丽君, 马晓昌. 心肌梗死后心力衰竭动物模型的研究进展[J]. 中西医结合心脑血管病杂志, 2023, 21(16): 2984-2988.
[19]  Miura, T., Araki, M., Onoue, T., et al. (2020) Transient Marked Myocardial Thickening after Reperfused Myocardial Infarction Causing Refractory Heart Failure. CASE, 4, 106-108.
https://doi.org/10.1016/j.case.2019.09.007
[20]  侯江红, 吴秀娟, 王一锦, 等. 芪苈强心胶囊联合硝酸甘油治疗急性左心衰竭的临床研究[J]. 现代药物与临床, 2019, 34(11): 3244-3249.
[21]  Wei, J.M., Zhu, J.P., Zhang, T.Y., et al. (2019) Application of Network Pharmacology to Explore the Mechanism of Yi Xin Tai Formula in Treating Heart Failure. Digital Chinese Medicine, 2, 237-256.
https://doi.org/10.1016/j.dcmed.2020.01.005
[22]  Hou, T.T., Liu, G.Z., Zang, Y.X., et al. (2019) Qiliqiangxin Attenuates Atrial Structural Remodeling in Prolonged Pacing-Induced Atrial Fibrillation in Rabbits. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 585-592.
https://doi.org/10.1007/s00210-018-01611-0
[23]  Matsumura, N., Takahara, S., Maayah, Z.H., et al. (2018) Resveratrol Improves Cardiac Function and Exercise Performance in MI-Induced Heart Failure through the Inhibition of Cardiotoxic HETE Metabolites. Journal of Molecular and Cellular Cardiology, 125, 162-173.
https://doi.org/10.1016/j.yjmcc.2018.10.023
[24]  Koehne, P., Willam, C., Strauss, E., et al. (2000) Lack of Hypoxic Stimulation of VEGF Secretion from Neutrophils and Platelets. American Journal of Physiology-Heart and Circulatory Physiology, 279, H817-H824.
https://doi.org/10.1152/ajpheart.2000.279.2.H817
[25]  Mallick, R. and Yl?-Herttuala, S. (2022) Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells, 11, 3045-3060.
https://doi.org/10.3390/cells11244134
[26]  Mauler, M., Herr, N., Schoenichen, C., et al. (2019) Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation, 139, 918-931.
https://doi.org/10.1161/CIRCULATIONAHA.118.033942
[27]  Murphy, S.P., Kakkar, R., McCarthy, C.P., et al. (2020) Inflammation in Heart Failure: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 1324-1340.
https://doi.org/10.1016/j.jacc.2020.01.014
[28]  Boulogne, M., Sadoune, M., Launay, J., et al. (2017) Inflammation versus Mechanical Stretch Biomarkers over Time in Acutely Decompensated Heart Failure with Reduced Ejection Fraction. International Journal of Cardiology, 226, 53-59.
https://doi.org/10.1016/j.ijcard.2016.10.038
[29]  Li, X., Zhang, Z. and Wang, H. (2017) Fusaric Acid (FA) Protects Heart Failure Induced by Isoproterenol (ISP) in Mice through Fibrosis Prevention via TGF-β1/SMADs and PI3K/AKT Signaling Pathways. Biomedicine & Pharmacotherapy, 93, 130-145.
https://doi.org/10.1016/j.biopha.2017.06.002
[30]  Ghafouri-Fard, S., Khanbabapour, S.A., Hussen, B.M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781.
https://doi.org/10.1007/s11033-022-07468-0
[31]  Qin, W., Cao, L. and Massey, I.Y. (2021) Role of PI3K/Akt Signaling Pathway in Cardiac Fibrosis. Molecular and Cellular Biochemistry, 476, 4045-4059.
https://doi.org/10.1007/s11010-021-04219-w
[32]  Moulin, S., Thomas, A., Arnaud, C., et al. (2020) Cooperation between Hypoxia-Inducible Factor 1α and Activating Transcription Factor 4 in Sleep Apnea-Mediated Myocardial Injury. Canadian Journal of Cardiology, 36, 936-940.
https://doi.org/10.1016/j.cjca.2020.04.002
[33]  Sato, T. and Takeda, N. (2023) The Roles of HIF-1α Signaling in Cardiovascular Diseases. Journal of Cardiology, 81, 202-208.
https://doi.org/10.1016/j.jjcc.2022.09.002
[34]  Shao, M., Guo, D., Lu, W., et al. (2020) Identification of the Active Compounds and Drug Targets of Chinese Medicine in Heart Failure Based on the PPARs-RXRα Pathway. Journal of Ethnopharmacology, 257, Article ID: 112859.
https://doi.org/10.1016/j.jep.2020.112859
[35]  Wang, D., Tian, L., Shi, C., et al. (2020) Network Pharmacology-Based Prediction of the Active Ingredients and Mechanism of Shen Gui Capsule for Application to Coronary Heart Disease. Computers in Biology and Medicine, 122, Article ID: 103825.
https://doi.org/10.1016/j.compbiomed.2020.103825
[36]  Wang, J., Zhang, Y., Liu, Y., et al. (2020) Uncovering the Protective Mechanism of Huoxue Anxin Recipe against Coronary Heart Disease by Network Analysis and Experimental Validation. Biomedicine & Pharmacotherapy, 121, Article ID: 109655.
https://doi.org/10.1016/j.biopha.2019.109655
[37]  Zhang, S.Y., Li, L., Zhang, N., et al. (2020) Systematic Pharmacological Strategies to Explore the Regulatory Mechanism of Ma Xing Shi Gan Decoction on COVID-19. Digital Chinese Medicine, 3, 96-115.
https://doi.org/10.1016/j.dcmed.2020.06.004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133