The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.
References
[1]
Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory, a Modern Introduction. Cambridge University press, New York. https://doi.org/10.1017/CBO9780511816086
[2]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Singapore. https://doi.org/10.1142/6730
[3]
Li, F.Y., Baker Jr., R.M.L., Fang, Z.Y., Stephenson, G.V. and Chen, Z.Y. (2008) Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects. Regular Article—Theoretical Physics, 56, 407-423. https://doi.org/10.1140/epjc/s10052-008-0656-9
[4]
Bojowald, M. (2008) Quantum Nature of Cosmological Bounces. General Relativity and Gravitation, 40, 2659-2683. http://arxiv.org/abs/0801.4001 https://doi.org/10.1007/s10714-008-0645-1
[5]
Li, F.Y., Baker, R.M.L. and Chen, Z.Y. (2006) Perturbative Photon Flux Generated by High Frequency Relic Gravitational Waves and Utilization of Them for Their Detection. http://arxiv.org/abs/gr-qc/0604109
[6]
Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. https://doi.org/10.3390/e10040441
[7]
Beckwith, A.W. (2009) Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions (Wheeler De Witt eqn. results vs. String theory?). http://vixra.org/abs/0908.0109
[8]
Beckwith, A.W. (2008) Implications for the Cosmological Landscape: Can Thermal Inputs from a Prior Universe Account for Relic Graviton Production? AIP Conference Proceedings, 969, 1091-1102. https://doi.org/10.1063/1.2844947
[9]
Beckwith, A.W. (2009) Relic High Frequency Gravitational waves from the Big Bang, and How to Detect Them. AIP Conference Proceedings, 1103, 571-581. http://arxiv.org/abs/0809.1454 https://doi.org/10.1063/1.3115567
[10]
Corda, C. (2008) Primordial Production of Massive Relic Gravitational Waves from a Weak Modification of General Relativity. Astroparticle Physics, 30, 209-215. http://arxiv.org/abs/0812.0483 https://doi.org/10.1016/j.astropartphys.2008.09.003
[11]
Beckwith, A.W. (2007) Instanton Formation of Vacuum Energy via the Reissner-Nordstrom Geometry of a Wormhole Bridge between a Prior to Our Present Universe. arXiv: 0710.3788.
[12]
Glinka, L. (2007) Quantum Information from Graviton-Matter Gas. Sigma, 3, Article 087. https://doi.org/10.3842/SIGMA.2007.087
[13]
Giovannini, M., Gasperini, M. and Veneziano, G. (1995) Primordial Magnetic Fields from String Cosmology. Physical Review Letters, 75, 3796-3799. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.3796 https://doi.org/10.1103/PhysRevLett.75.3796
[14]
Kolb, E. and Turner, S. (1994) The Early Universe. Westview Press, Chicago.
[15]
de Vega, H. (2009) Inflation in the Standard Model of the Universe. http://isapp2009.mib.infn.it/media/lectures/devega.pdf
[16]
Donoghue, J.F. (1995) Introduction to the Effective Field Theory Description of Gravity. http://arxiv.org/abs/gr-qc/9512024
[17]
Lloyd, S. (2002) Computational Capacity of the Universe. Physical Review Letter, 88, Article ID: 237901. https://doi.org/10.1103/PhysRevLett.88.237901
[18]
Glauber, R. (1963) Coherent and Incoherent States of the Radiation Field. Physical Review Journals Archive, 131, 2766-2788. https://doi.org/10.1103/PhysRev.131.2766
[19]
Woods, L. (2012) Diffraction from Embedded Reflectors in LiBaker HFGW Detector. Physics Procedia, 38, 66-76. https://doi.org/10.1016/j.phpro.2012.08.012
[20]
Veneziano, G. (1993) Classical and Quantum Gravity from String Theory. In: Bento, M.C., Bertolami, O., Mourao, J.M. and Picken, R.F., Eds., Classical and Quantum Gravity, World Press Scientific, Singapore, 134-180.
[21]
Kieffer, K. (2008) Quantum Gravity. 3rd Edition, Oxford University Press, Oxford.
[22]
Mohaupt, T. (2003) Introduction to String Theory. Lecture Notes in Physics, 631, 173-251. https://arxiv.org/abs/hep-th/0207249 https://doi.org/10.1007/978-3-540-45230-0_5
[23]
Ford, L.H. (1994) Gravitons and Lightcone Fluctuations. http://arxiv.org/abs/gr-qc/9410047
[24]
Venkataratnam, K. and Suresh, P. (2008) Density Fluctuations in the Oscillatory Phase of Nonclassical Inflaton in FRW Universe. International Journal of Modern Physics D, 17, 1991-2005. http://arxiv.org/abs/0712.3129 https://doi.org/10.1142/S0218271808013662
[25]
Grishchuk, L. and Sidorov, Y. (1989) On the Quantum State of Relic Gravitons. Classical and Quantum Gravity, 6, L161. https://doi.org/10.1088/0264-9381/6/9/002
[26]
Grishchuk, L.P. (1993) Quantum Effects in Cosmology. Classical and Quantum Gravity, 10, 2449-2478. http://arxiv.org/abs/gr-qc/9302036 https://doi.org/10.1088/0264-9381/10/12/006
[27]
Grishchuk, L. (1998) The Detectability of Relic (Squeezed) Gravitational Waves by Laser Interferometers. http://arxiv.org/abs/gr-qc/9810055
[28]
Grishchuk, L. (2008) Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation. http://arxiv.org/abs/0707.3319
[29]
Belunski, V. and Verdaguer, E. (2001) Gravitational Solitons. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535253
[30]
Bojowald, M. (2008) Loop Quantum Cosmology. Living Rev. Relativity, 11, 4. http://www.livingreviews.org/lrr-2008-4 https://doi.org/10.12942/lrr-2008-4
[31]
Ashtekar, A. and Bojowald, M. (2006) Quantum Geometry and the Schwarzschild Singularity. Classical and Quantum Gravity, 23, 391-411. https://arxiv.org/abs/gr-qc/0509075 https://doi.org/10.1088/0264-9381/23/2/008
[32]
Ashtekar, A. and Bojowald, M. (2006) Quantum Geometry and the Schwarzschild Singularity. Classical and Quantum Gravity, 23, 391-411. https://arxiv.org/abs/gr-qc/0509075 https://doi.org/10.1088/0264-9381/23/2/008
[33]
Randall, L. (2002) Extra Dimensions and Warped Geometries. Science, 296, 1422-1427. https://doi.org/10.1126/science.1072567
[34]
Arkani-Hamed, N., Kaplan, D., Murayama, H. and Nomura, Y. (2001) Viable Ultraviolet-Insensitive Supersymmetry Breaking. Journal of High Energy Physics, 102, 41. http://arxiv.org/abs/hep-ph/0012103 https://doi.org/10.1088/1126-6708/2001/02/041
[35]
T’Hooft, G. (1993) Dimensional Reduction in Quantum Gravity. http://arxiv.org/abs/gr-qc/9310026
[36]
T’Hooft, G. (2008) A Locally Finite Model for Gravity. Foundations of Physics, 38, 733-757. http://arxiv.org/abs/0804.0328 https://doi.org/10.1007/s10701-008-9231-3
[37]
T’Hooft, G. (2006) The Mathematical Basis for Deterministic Quantum Mechanics. http://arxiv.org/abs/quant-ph/0604008
[38]
Kerr, R.P. (2023) Do Black Holes Have Singularities? https://arxiv.org/abs/2312.00841