全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无人机航拍图像的YOLOv5松材线虫病监测研究
The Study of Pine Wood Nematode Disease Detection Using YOLOv5 Based on Unmanned Aerial Vehicle Aerial Images

DOI: 10.12677/AIRR.2024.131001, PP. 1-8

Keywords: 松材线虫病,YOLOv5,目标检测,深度学习,林木健康监测
Pine Wood Nematode Disease
, YOLOv5, Object Detection, Deep Learning, Forest Tree Health Monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

松材线虫病是一种严重危害林木的疾病,由微小的松材线虫引发,主要寄生于松树和其他针叶树种。这种疾病通过线虫的侵入和繁殖,释放毒素导致树木逐渐衰退直至死亡。它不仅对林业产业构成威胁,还对生态系统的稳定性有重大影响,并且具有高度传染性,在森林中迅速扩散。为了控制其传播,采取了包括对木材国际贸易限制在内的严格检疫和防治措施。此外,本研究采用了先进的目标检测网络技术YOLOv5进行松材线虫病的监测,经过500个epoch的训练,实现了0.88的平均精度(mAP)。本文还提出了一种用于无人机航拍的实时高效监测解决方案,以加强病害控制,为相关领域的研究和应用提供了有力支持。
Pine Wood Nematode Disease is a serious affliction damaging forest trees, caused by the tiny pine wood nematode. This nematode primarily parasitizes pine trees and other conifer species, leading to the gradual decline and eventual death of infected trees. The disease not only threatens the forestry industry but also has a significant impact on the stability of ecosystems due to its highly contagious nature, spreading rapidly in forest ecosystems. To curb the spread of pine wilt disease, strict quarantine and control measures have been adopted by various countries, including restrictions on the international trade of wood and wood products to prevent the spread of the nematode. Additionally, this study utilized advanced target detection network technology, YOLOv5, for monitoring pine wilt disease. After training through 500 epochs, it achieved an average precision (mAP) of 0.88. The paper also proposes a real-time and efficient monitoring solution using drones, enhancing the monitoring and control of pine wilt disease and providing robust support for research and application in related fields.

References

[1]  Büttner, C., Bargen, S.V., Bandte, M., and Mühlbach, H.P. (2013) Forest Diseases Caused by Viruses. In: Gonthier, P. and Nicolotti, G., Eds., Infectious Forest Diseases, CABI, Wallingford, 50-75.
https://doi.org/10.1079/9781780640402.0050
[2]  Mamiya, Y. (1983) Pathology of the Pine Wilt Disease Caused by Bursaphelenchus xylophilus. Annual Review of Phytopathology, 21, 201-220.
https://doi.org/10.1146/annurev.py.21.090183.001221
[3]  Webster, J.M. (2004) The Pine Wood Nematode: Implications of Factors Past and Present for Pine Wilt Disease. In: Webster, J.M., Ed., The Pinewood Nematode, Bursaphelenchus xylophilus, Brill, Leiden, 55-64.
https://brill.com/downloadpdf/book/edcoll/9789047413097/B9789047413097_s010.pdf
[4]  Braasch, H. and Mota, M. (2007) The Pine Wood Nematode: A Personal View.
https://dspace.uevora.pt/rdpc/handle/10174/6787
[5]  Zhang, K., Liang, J., Yan, D. and Zhang, X. (2010) Research Advances of Pine Wood Nematode Disease in China. World Forestry Research, 23, 59-63.
[6]  Liu, Y., et al. (2021) The Impact of Pine Wood Nematode Infection on the Host Fungal Community. Microorganisms, 9, 896.
https://doi.org/10.3390/microorganisms9050896
[7]  Proen?a, D.N., Grass, G. and Morais, P.V. (2017) Understanding Pine Wilt Disease: Roles of the Pine Endophytic Bacteria and of the Bacteria Carried by the Disease—Causing Pinewood Nematode. MicrobiologyOpen, 6, e00415.
https://doi.org/10.1002/mbo3.415
[8]  Edmonds, R.L. (2013) General Strategies of Forest Disease Management. In: Gonthier, P. and Nicolotti, G., Eds., Infectious Forest Diseases, CABI, Wallingford, 29-49.
https://doi.org/10.1079/9781780640402.0029
[9]  Jiang, P., Ergu, D., Liu, F., Cai, Y., and Ma, B. (2022) A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073.
https://doi.org/10.1016/j.procs.2022.01.135
[10]  Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y. M. (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection.
http://arxiv.org/abs/2004.10934
[11]  Neubeck, A. and Van Gool, L. (2006) Efficient Non-Maximum Suppression. 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, 20-24 August 2006, 850-855.
https://ieeexplore.ieee.org/abstract/document/1699659/
https://doi.org/10.1109/ICPR.2006.479
[12]  Redmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Improvement. arXiv: 1804.02767.
http://arxiv.org/abs/1804.02767
[13]  Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W. and Yeh, I.-H. (2020) CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, 14-19 June 2020, 390-391.
http://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
[14]  He, K., Zhang, X., Ren, S. and Sun, J. (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916.
https://doi.org/10.1109/TPAMI.2015.2389824
[15]  Liu, S., Qi, L., Qin, H., Shi, J. and Jia, J. (2018) Path Aggregation Network for Instance Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 8759-8768.
http://openaccess.thecvf.com/content_cvpr_2018/html/Liu_Path_Aggregation_Network_CVPR_2018_paper.html

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413