全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Case Study for Undetermined Mosquito Species by Polymerase Chain Reaction in Western Burkina Faso

DOI: 10.4236/ajmb.2024.142004, PP. 43-53

Keywords: Malaria, Vector, DNA, PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Malaria eradication campaigns all over the world are largely based on parasite and vector control. Vector identification, whether morphological or molecular, is an essential component of vector control. This study analyzed the possible causes of indeterminate polymerase chain reaction (PCR) results for mosquito species in Western part of Burkina Faso. Methodology: From July 2021 to November 2021, mosquitoes were collected during the period of high malaria transmission in the village of Séguéré, Houet province, Burkina Faso, and morphologically identified. After DNA extraction, samples were amplified by sine 200× PCR to identify species of the Anopheles gambiae complex. Indeterminate samples were then selected for further analysis. The parameters studied were: DNA dilution, the effect of protocol adjusting, and the type of protocol used. Results: A total of 130 “indeterminate” DNAs diluted 1:10 were analyzed. After dilution, the mean amount was 14.73 ± 3.59 ng/μL and absorbance 1.71 ± 0.1. PCR chain reaction yielded 94.62% (123/130) anopheline species in SINE PCR, 5.38% (7/130) “negative”. A significant difference between SINE PCR before dilution and after dilution was observed (P < 0.001). Identification tests carried out using other protocols gave no positive results. From these results, we note that the adaptation of the protocol significantly reduced the polymerase amplification results of the species. Conclusion: It is therefore necessary to respect the amplification protocols. However, the persistence of “indeterminate” results suggests that further studies should be carried out to shed more light on the subject.

References

[1]  Sumruayphol, S., et al. (2020) Seasonal Dynamics and Molecular Differentiation of Three Natural Anopheles Species (Diptera: Culicidae) of the Maculatus Group (Neocellia Series) in Malaria Hotspot Villages of Thailand. Parasites and Vectors, 13, Article No. 574.
https://doi.org/10.1186/s13071-020-04452-0
[2]  Riehle, M.M., Guelbeogo, W.M., Gneme, A., Eiglmeier, K., Holm, I., Bischoff, E., et al. (2011) A Cryptic Subgroup of Anopheles gambiae Is Highly Susceptible to Human Malaria Parasites. Proceedings of the National Academy of Sciences of the United States of America, 108, 15037-15042.
[3]  Service, M. (2012) Medical Entomology for Students. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139002967
[4]  Hay, S.I., et al. (2010) Developing Global Maps of the Dominant Anopheles Vectors of Human Malaria. PLOS Medicine, 7, e1000209.
[5]  Coetzee, M., Hunt, R.H., Wilkerson, R., Della Torre, A., Coulibaly, M.B. and Besansky, N.J. (2013) Anopheles coluzzii and Anopheles amharicus, New Members of the Anopheles gambiae Complex. Zootaxa, 3619, 246-274.
https://doi.org/10.11646/zootaxa.3619.3.2
[6]  Plewes, K., Leopold, S.J., Kingston, H.W.F. and Dondorp, A.M. (2019) Malaria: What’s New in the Management of Malaria? Infectious Disease Clinics of North America, 33, 39-60.
https://doi.org/10.1016/j.idc.2018.10.002
[7]  OMS (2022) Rapport Paludisme 2022. Geneva.
[8]  Carnevale, P. and Robert, V. (2009) Les Anophèles, IRD Edition, IRD, Marseille.
https://doi.org/10.4000/books.irdeditions.10374
[9]  Nkya, T.E., Fillinger, U., Sangoro, O.P., Marubu, R., Chanda, E. and Mutero, C.M. (2022) Six Decades of Malaria Vector Control in Southern Africa: A Review of the Entomological Evidence-Base. Malaria Journal, 21, Article No. 279.
https://doi.org/10.1186/s12936-022-04292-6
[10]  Cohuet, A., Simard, F., Toto, J.C., Kengne, P., Coetzee, M. and Fontenille, D. (2003) Species Identification within the Anopheles funestus Group of Malaria Vectors in Cameroon and Evidence for a New Species. American Journal of Tropical Medicine and Hygiene, 69, 200-205.
https://doi.org/10.4269/ajtmh.2003.69.200
[11]  Coluzzi, M., Sabatini, A., Della Torre, A., Di Deco, M.A. and Petrarca, V. (2002) A Polytene Chromosome Analysis of the Anopheles gambiae Species Complex. Science (80-.), 298, 1415-1418.
https://doi.org/10.1126/science.1077769
[12]  Dabiré, K.R., et al. (2009) Distribution of Insensitive Acetylcholinesterase (ace-1R) in Anopheles gambiae s. l. Populations from Burkina Faso (West Africa). Tropical Medicine & International Health, 14, 396-403.
https://doi.org/10.1111/j.1365-3156.2009.02243.x
[13]  Kaboré, D.P.A., et al. (2023) Mosquito (Diptera: Culicidae) Populations in Contrasting Areas of the Western Regions of Burkina Faso: Species Diversity, Abundance and Their Implications for Pathogen Transmission. Parasites and Vectors, 16, Article No. 438.
https://doi.org/10.1186/s13071-023-06050-2
[14]  Carnevale, P. (1974) Comparaison de trois méthodes de capture pour l’échantillonnage d’une population d’Anophdes nili (Theobald), 1904. Cahier. O.R.S.T.O.M., série Entomologie médicale et Parasitologie, 22, 135-144.
[15]  Gillies, M.T. and Coetzee, M. (1987) A Supplement to the Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, Johannesburg, No. 55.
http://www.metoffice.gov.uk/public/weather/climate/u1214qgj0
[16]  Alout, H., et al. (2014) Interplay between Plasmodium Infection and Resistance to Insecticides in Vector Mosquitoes. The Journal of Infectious Diseases, 210, 1464-1470.
https://doi.org/10.1093/infdis/jiu276
[17]  Scientific, T.F. (1975) T042-Technical Bulletin NanoDrop Spectrophotometers 260/280.
[18]  Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z. and della Torre, A. (2008) Insertion Polymorphisms of SINE200 Retrotransposons within Speciation Islands of Anopheles gambiae Molecular Forms. Malaria Journal, 7, Article No. 163.
https://doi.org/10.1186/1475-2875-7-163
[19]  Favia, G., Lanfrancotti, A., Spanos, L., Sidén-Kiamos, I. and Louis, C. (2001) Molecular Characterization of Ribosomal DNA Polymorphisms Discriminating among Chromosomal Forms of Anopheles gambiae s.s. Insect Molecular Biology, 10, 19-23.
https://doi.org/10.1046/j.1365-2583.2001.00236.x
[20]  Bi, I.V., du Jardin, P., Mergeai, G. and Baudoin, J.P. (1997) Optimisation et application de la RAPD (Random Amplified Polymorphic DNA) dans un programme de sélection récurrente chez le cotonnier (Gossypium spp.). Biotechnology, Agronomy and Society and Environment, 1, 142-150.
[21]  Ahn, S.J., Costa, J. and Emanuel, J.R. (1996) PicoGreen Quantitation of DNA: Effective Evaluation of Samples Pre- or Post-PCR. Nucleic Acids Research, 24, 2623-2625.
https://doi.org/10.1093/nar/24.13.2623
[22]  Haque, K.A., Pfeiffer, R.M., Beerman, M.B., Struewing, J.P., Chanock, S.J. and Bergen, A.W. (2003) Performance of High-Throughput DNA Quantification Methods. BMC Biotechnology, 3, Article No. 20.
https://doi.org/10.1186/1472-6750-3-20
[23]  Wadaka, M. (2011) Stratégies de survie en saison sèche chez les vecteurs majeurs du paludisme au Burkina Faso: physiologie, morphologie, comportement et métabolisme. Université polytechnique de bobo-dioulasso, Dindéresso.
[24]  Coyne, J.A. (1998) The Evolutionary Genetics of Speciation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353, 287-305.
https://doi.org/10.1098/rstb.1998.0210
[25]  Coluzzi, M. (1999) The Clay Feet of the Malaria Giant and Its African Roots: Hypotheses and Inferences about Origin, Spread and Control of Plasmodium falciparum. Parasitologia, 41, 277-283.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413