全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Dual of the Two-Variable Exponent Amalgam Spaces (Lq(),lp())(Ω)

DOI: 10.4236/jamp.2024.122027, PP. 383-431

Keywords: Amalgam Spaces, Variable Exponent Lebesgue Spaces, Dual of a Vector Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (Lq(),lp())(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.

References

[1]  Orlicz, W. (1931) Über konjugierte Exponentenfolgen. Studia Mathematica, 3, 200-212.
https://doi.org/10.4064/sm-3-1-200-211
[2]  Kováčik, O. and Rákosník, J. (1991) On Spaces Lp(x) and Wk,p(x). Czechoslovak Mathematical Journal, 41, 592-618.
https://doi.org/10.21136/CMJ.1991.102493
[3]  Diening, L., Hästö, P. and Nekvinda, A. (2004) Open Problems in Variable Exponent Lebesgue and Sobolev Spaces. FSDONA04 Proceedings (Milovy, Czech Republic), 66, 38-58.
[4]  Ruzicka, M. (2000) Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0104029
[5]  Acerbi, E. and Mingione, G. (2002) Regularity Results for Stationary Electrorheological Fluids. Archive for Rational Mechanics and Analysis, 164, 213-259.
https://doi.org/10.1007/s00205-002-0208-7
[6]  Chen, Y., Levine, S. and Rao, M. (2006) Variable Exponent, Linear Growth Functionals in Image Restoration. SIAM Journal on Applied Mathematics, 66, 1383-1406.
https://doi.org/10.1137/050624522
[7]  Acerbi, E. and Mingione, G. (2005) Gradient Estimates for the p(x)-Laplacian System. Journal für die Reine und Angewandte Mathematik, 584, 117-148.
https://doi.org/10.1515/crll.2005.2005.584.117
[8]  Fan, X.L. (2007) Global C1,α Regularity for Variable Exponent Elliptic Equations in Divergence Form. Journal of Differential Equations, 235, 397-417.
https://doi.org/10.1016/j.jde.2007.01.008
[9]  Feichtinger, H.G. (1980, August) Banach Convolution Algebras of Wiener Type. Functions, Series, Operators, Proceedings of the International Conference in Budapest, 38, 509-524.
[10]  Feichtinger, H.G. (1981) Banach Spaces of Distributions of Wiener’s Type and Interpolation. In: Butzer, P.L., Sz.-Nagy, B., Görlich, E., Eds., Functional Analysis and Approximation, Vol. 60, Birkhäuser Basel, Basel, 153-165.
https://doi.org/10.1007/978-3-0348-9369-5_16
[11]  Feichtinger, H.G. (1981) A Characterization of Minimal Homogeneous Banach Spaces. Proceedings of the American Mathematical Society, 81, 55-61.
https://doi.org/10.1090/S0002-9939-1981-0589135-9
[12]  Heil, C. (2003) An Introduction to Weighted Wiener Amalgams. In: Krishna, M., Radha, R. and Thangavelu, S., Eds., Wavelets and Their Applications, Allied Publishers, New Delhi, 183-216.
[13]  Grochenig, K. (2001) Foundations of Time-Frequency Analysis. Birkhäuser Verlag, Basel.
[14]  Wiener, N. (1926) On the Representation of Functions by Trigonometrical Integrals. Mathematische Zeitschrift, 24, 575-616.
https://doi.org/10.1007/BF01216799
[15]  Holland, F. (1975) Harmonic Analysis on Amalgams of Lp and lq. Journal of the London Mathematical Society, 10, 295-305.
https://doi.org/10.1112/jlms/s2-10.3.295
[16]  Bertrandias, J.-P. and Dupius, C. (1979) Transformation de Fourier sur les espaces lp(Lq'). Annales de L’Institut Fourier, 29, 189-206.
https://doi.org/10.5802/aif.734
[17]  Fournier, J.J.F. and Stewart, J. (1985) Amalgams of Lp and lq. Bulletin of the AMS, 1, 1-21.
https://doi.org/10.1090/S0273-0979-1985-15350-9
[18]  Fournier, J.J.F. (1983) On the Hausdorff-Young Theorem for Amalgams. Monatshefte für Mathematik, 95, 117-135.
https://doi.org/10.1007/BF01323655
[19]  Meski, A. and Zaigum, M.A. (2014) On the Boundedness of Maximal and Potential Operators in Variable Exponent Amalgam Spaces. Journal of Mathematical Inequalities, 8, 123-152.
https://doi.org/10.7153/jmi-08-08
[20]  Aydin, I. and Gurkanli, A.T. (2014) On the Weighted Variable Exponent Amalgam W(Lp(x),Lqm)*. Acta Mathematica Scientia, 34B, 1098-1110.
[21]  Aydin, I. (2017) On Vector-Valued Classical and Variable Exponent Amalgam Spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66, 100-114.
https://doi.org/10.1501/Commua1_0000000805
[22]  Feuto, J., Fofana, I. and Koua, K. (2008) Espaces de fonctions a moyenne fractionnaire integrable sur les groupes localement compacts. ArXiv: 0810.1206v1.
[23]  Bertrandias, J.P., Datry, C. and Dupuis, C. (1978) Union et intersection d’espaces Lp invariantes par translation ou convolution. Annales de L’Institut Fourier, 28, 53-84.
https://doi.org/10.5802/aif.689
[24]  Busby, R.C. and Smith, H.A. (1981) Product-Convolution Operators and Mixed-Norm Spaces. Transactions of the American Mathematical Society, 263, 309-341.
https://doi.org/10.1090/S0002-9947-1981-0594411-4
[25]  Stewart, J. (1979) Fourier Transforms of Unbounded Measures. Canadian Journal of Mathematics, 31, 1281-1292.
https://doi.org/10.4153/CJM-1979-106-4
[26]  Coulibaly, S. and Fofana, I. (2019) On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces. Journal of Fourier Analysis and Applications, 25, 184-209.
https://doi.org/10.1007/s00041-017-9577-z
[27]  Cruz-Uribe, D. and Fiorenza, A. (2013) Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer, Heidelberg.
https://doi.org/10.1007/978-3-0348-0548-3
[28]  Royden, H.L. (1988) Real Analysis. 3rd Edition, Macmillan Publishing Company, New York.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413