全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PEDOT:PSS在超级电容器上的应用研究进展
Research Progress on the Application of PEDOT:PSS in Supercapacitors

DOI: 10.12677/JAPC.2024.131007, PP. 46-53

Keywords: PEDOT:PSS,超级电容器,导电聚合物
PEDOT:PSS
, Supercapacitors, Conductive Polymers

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,能源危机不断加剧,可持续再生能源得到了巨大发展。电化学储能技术是收集、存储这类能源的重要技术之一。电化学储能器件中最有代表性的两类是超级电容器和锂离子电池。相比锂离子电池,超级电容器具有更高的功率密度、出色的电荷储存能力、高安全性、长循环寿命和出色的环境适应性。因此,超级电容器作为一种环保可持续的新型储能装置备受关注。电极材料是决定超级电容器性能的关键因素。导电聚合物聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)具有高导电性、可溶液加工、较高的热稳定性、环境友好和安全等特点,因此作为超级电容器电极材料备受关注。
In recent years, the escalating energy crisis has propelled significant developments in sustainable renewable energy sources. Electrochemical energy storage technology stands out as a crucial means for collecting and storing such energy. Among the representative devices in electrochemical energy storage, supercapacitors and lithium-ion batteries are the most notable. In comparison to lithium-ion batteries, supercapacitors exhibit higher power density, outstanding charge storage capacity, enhanced safety, prolonged cycle life, and exceptional environmental adaptability. Therefore, supercapacitors, as an environmentally friendly and sustainable form of energy storage, have garnered considerable attention. The electrode material is a decisive factor determining the performance of supercapacitors. The conductive polymer poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) is characterized by high conductivity, solution processability, elevated thermal stability, environmental friendliness, and safety. Consequently, it has become a focal point of interest as an electrode material for supercapacitors.

References

[1]  Simon, P. and Gogotsi, Y. (2008) Materials for Electrochemical Capacitors. Nature Materials, 7, 845-854.
https://doi.org/10.1038/nmat2297
[2]  Al Sakka, M., Gualous, H., Van Mierlo, J. and Culc, H. (2009) Thermal Modeling and Heat Management of Supercapacitor Modules for Vehicle Applications. Journal of Power Sources, 194, 581-587.
https://doi.org/10.1016/j.jpowsour.2009.06.038
[3]  Gou, Q., Zhao, S., Wang, J., et al. (2020) Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors. Nano-Micro Letters, 12, Article No. 98.
https://doi.org/10.1007/s40820-020-00430-4
[4]  Manjakkal, L., Pullanchiyodan, A., Yogeswaran, N., et al. (2020) A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte. Advanced Materials, 32, Article ID: 1907254.
https://doi.org/10.1002/adma.201907254
[5]  Xu, Y.F., Lu, W.B., Xu, G.B. and Chou, T.W. (2021) Structural Supercapacitor Composites: A Review. Composites Science and Technology, 204, Article ID: 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[6]  Noori, A., El-Kady, M.F., Rahmanifar, M.S., et al. (2019) Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chemical Society Reviews, 48, 1272-1341.
https://doi.org/10.1039/C8CS00581H
[7]  Lin, J.Y., Huang, J.J., Hsueh, Y.L. and Zhang, Y.X. (2019) Diameter Effect of Silver Nanowire Doped in Activated Carbon as Thin Film Electrode for High Performance Supercapacitor. Applied Surface Science, 477, 257-263.
https://doi.org/10.1016/j.apsusc.2017.10.008
[8]  Yao, J., Ji, P., Sheng, N., et al. (2018) Hierarchical Core-Sheath Polypyrrole@Carbon Nanotube/Bacterial Cellulose Macrofibers with High Electrochemical Performance for All-Solid-State Supercapacitors. Electrochimica Acta, 283, 1578-1588.
https://doi.org/10.1016/j.electacta.2018.07.086
[9]  Garino, N., Lamberti, A., Stassi, S., et al. (2019) Multifunctional Flexible Membranes Based on Reduced Graphene Oxide/Tin Dioxide Nanocomposite and Cellulose Fibers. Electrochimica Acta, 306, 420-426.
https://doi.org/10.1016/j.electacta.2019.02.095
[10]  Faniyi, I.O., Fasakin, O., Olofinjana, B., et al. (2019) The Comparative Analyses of Reduced Graphene Oxide (RGO) Prepared via Green, Mild and Chemical Approaches. SN Applied Sciences, 1, Article No. 1181.
https://doi.org/10.1007/s42452-019-1188-7
[11]  Liu, K.K., Jiang, Q., Kacica, C., et al. (2018) Flexible Solid-State Supercapacitor Based on Tin Oxide/Reduced Graphene Oxide/Bacterial Nanocellulose. RSC Advances, 8, 31296-31302.
https://doi.org/10.1039/C8RA05270K
[12]  Teng, W., Zhou, Q., Wang, X., et al. (2022) Enhancing Ions/Electrons Dual Transport in RGO/PEDOT:PSS Fiber for High-Performance Supercapacitor. Carbon, 189, 284-292.
https://doi.org/10.1016/j.carbon.2021.12.088
[13]  汪丽. 阳离子聚丙烯酸酯掺杂作用下聚吡咯/木质纤维导电纸的制备及性能研究[D]: [硕士学位论文]. 西安: 陕西科技大学, 2015.
[14]  Sahin, M.E., Blaabjerg, F. and Sangwongwanich, A. (2020) A Review on Supercapacitor Materials and Developments. Turkish Journal of Materials, 5, 10-24.
[15]  Ngai, K.S. (2022) Electrode Materials for Electrochemical Double-Layer Capacitors. Encyclopedia of Energy Storage, 4, 341-350.
https://doi.org/10.1016/B978-0-12-819723-3.00108-6
[16]  Conway, B.E., Birss, V. and Wojtowicz, J. (1997) The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. Journal of Power Sources, 66, 1-14.
https://doi.org/10.1016/S0378-7753(96)02474-3
[17]  Shi, X., Zheng, S., Wu, Z.S. and Bao, X.H. (2018) Recent Advances of Graphene-Based Materials for High-Performance and New-Concept Supercapacitors. Journal of Energy Chemistry, 27, 25-42.
https://doi.org/10.1016/j.jechem.2017.09.034
[18]  Kumar, Y., Rawal, S., Joshi, B. and Hashmi, S.A. (2019) Background, Fundamental Understanding and Progress in Electrochemical Capacitors. Journal of Solid State Electrochemistry, 23, 667-692.
https://doi.org/10.1007/s10008-018-4160-3
[19]  Chodankar, N.R., Pham, H.D., Nanjundan, A.K., et al. (2020) True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 16, Article ID: 2002806.
https://doi.org/10.1002/smll.202002806
[20]  Zhao, Z., Richardson, G.F., Meng, Q., et al. (2015) PEDOT-Based Composites as Electrode Materials for Supercapacitors. Nanotechnology, 27, Article ID: 042001.
https://doi.org/10.1088/0957-4484/27/4/042001
[21]  Wang, X., Lu, Q., Chen, C., et al. (2017) A Consecutive Spray Printing Strategy to Construct and Integrate Diverse Supercapacitors on Various Substrates. ACS Applied Materials & Interfaces, 9, 28612-28619.
https://doi.org/10.1021/acsami.7b08833
[22]  Xu, J.L., et al. (2017) Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 9, 27649-27656.
[23]  Zhang, L.L. and Zhao, X.S. (2009) Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38, 2520-2531.
https://doi.org/10.1039/b813846j
[24]  Selvaraj, T., Perumal, V., Khor, S.F., et al. (2020) The Recent Development of Polysaccharides Biomaterials and Their Performance for Supercapacitor Applications. Materials Research Bulletin, 126, Article ID: 110839.
https://doi.org/10.1016/j.materresbull.2020.110839
[25]  Fan, Z., Du, D., Yao, H. and Ouyang, J.Y. (2017) Higher PEDOT Molecular Weight Giving Rise to Higher Thermoelectric Property of PEDOT:PSS: A Comparative Study of Clevios P and Clevios PH1000. ACS Applied Materials & Interfaces, 9, 11732-11738.
https://doi.org/10.1021/acsami.6b15158
[26]  金莉, 孙东, 张剑荣. 石墨烯/聚3,4-乙烯二氧噻吩复合物的电化学制备及其在超级电容器中的应用[J]. 无机化学学报, 2012, 28(6): 1084-1090.
[27]  Sonia, T.S., Mini, P.A., Nandhini, R., et al. (2013) Composite Supercapacitor Electrodes Made of Activated Carbon/PEDOT:PSS and Activated Carbon/Doped PEDOT. Bulletin of Materials Science, 36, 547-551.
https://doi.org/10.1007/s12034-013-0509-5
[28]  董盟阳, 赵昕, 陈大俊, 张清华. 聚(3,4-乙烯二氧噻吩)/碳纸复合材料的制备及其在作为超级电容器电极材料的应用[J]. 化学世界, 2016, 57(8): 469-474.
https://Doi.Org/10.19500/J.Cnki.0367-6358.2016.08.002
[29]  Huang, H., Zhao, Y., Cong, T., et al. (2022) Flexible and Alternately Layered High-Loading Film Electrode Based on 3D Carbon Nanocoils and PEDOT:PSS for High-Energy-Density Supercapacitor. Advanced Functional Materials, 32, Article ID: 2110777.
https://doi.org/10.1002/adfm.202110777
[30]  赵玉娜, 陈锋, 周军双, 王建韧, 高发明. 石墨烯/PEDOT:PSS复合纤维的制备及超级电容性能[J]. 燕山大学学报, 2023, 47(2): 106-111.
[31]  支若彤. PEDOT:PSS/GO/CMC柔性复合电极材料的制备及电化学性能研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2023.
[32]  Chen, Y., Xu, J., Yang, Y., et al. (2016) The Preparation and Electrochemical Properties of PEDOT:PSS/MnO2/PEDOT Ternary Film and Its Application in Flexible Micro-Supercapacitor. Electrochimica Acta, 193, 199-205.
https://doi.org/10.1016/j.electacta.2016.02.021
[33]  Ge, Y., Jalili, R., Wang, C., et al. (2017) A Robust Free-Standing MoS2/Poly (3,4-Ethylenedioxythiophene): Poly (Styrenesulfonate) Film for Supercapacitor Applications. Electrochimica Acta, 235, 348-355.
https://doi.org/10.1016/j.electacta.2017.03.069
[34]  Liang, A., Li, D., Zhou, W., et al. (2018) Robust Flexible WS2/PEDOT: PSS Film for Use in High-Performance Miniature Supercapacitors. Journal of Electroanalytical Chemistry, 824, 136-146.
https://doi.org/10.1016/j.jelechem.2018.07.040
[35]  Yin, C., Yang, C., Jiang, M., et al. (2016) A Novel and Facile One-Pot Solvothermal Synthesis of PEDOT-PSS/Ni- Mn-Co-O Hybrid as an Advanced Supercapacitor Electrode Material. ACS Applied Materials & Interfaces, 8, 2741-2752.
https://doi.org/10.1021/acsami.5b11022
[36]  李会华, 葛优, 朱红丽, 冯晓苗, 刘玉革. 电沉积法制备聚(3,4-乙烯二氧噻吩)微米管及其在柔性全固态超级电容器的应用[J]. 无机化学学报, 2018, 34(10): 1799-1807.
[37]  李宗宇. PEDOT复合电极的制备及其电容性能研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2023.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133