全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

检测水中两种异味物质的SPME-GC-MS/MS方法
Determination of Two Odor Chemicals in Water Using SPME-GC-MS/MS Method

DOI: 10.12677/AEP.2024.141009, PP. 57-63

Keywords: 生活饮用水,2-甲基异莰醇,土臭素,SPME-GC-MS/MS
Drinking Water
, 2-Methylisoboreneol, Geosmin, SPME-GC-MS/MS

Full-Text   Cite this paper   Add to My Lib

Abstract:

本实验室探索了一种新的定量分析测定生活饮用水中2-甲基异莰醇和土臭素两种异味物质的全自动固相微萃取–三重四级杆气质联用仪法,主要对测定模式进行了优化,其他条件均相同的情况下,用dMRM模式和SIM模式进行比较测定,通过测定最低浓度点计算两种模式下的检出限和定量限,同时测定浓度为20.0 ng/L、50.0 ng/L的空白加标样品计算加标回收率。结果显示,dMRM模式下2-甲基异莰醇的检出限和定量限分别是0.82 ng/L、2.75 ng/L、回收率91.1%~107.1%,土臭素的检出限和定量限分别是0.63 ng/L、2.09 ng/L、回收率86.5%~102.0%。本实验中的方法可以高效准确的测定水中痕量异味物质,能够在检测生活饮用水中异味物质领域得以广泛的应用。
A new fully automated method for the quantitative analysis of two odor chemicals, 2-methyliso- boreneol and geosmin, in drinking water was developed and validated in this study. The method involved solid-phase microextraction (SPME) and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The comparative determination was conducted using the dMRM and SIM modes under the same conditions. The limit of detection (LOD) and limit of quantification (LOQ) for two target chemicals were determined by analyzing the minimum concentration points in both modes. Blank-spiking tests were also performed on standard chemicals of 20.0 ng/L and 50.0 ng/L. Our results show that the LOD and LOQ for 2-methylisogonanol were 0.82 ng/L and 2.75 ng/L, respectively. Additionally, the blank-spiking test exhibited recoveries within the range of 91.1%~107.1% when analyzed in the dMRM mode. For geosmin, the LOD and LOQ were found to be 0.63 ng/L and 2.09 ng/L, respectively, and the blank-spiking test indicated recoveries for this chemical between 86.5% and 102.0%. The method can proficiently and precisely identify trace odor compounds in drinking water, and is expected to have extensive utility.

References

[1]  陈晓萌. 上海H水厂二甲基异莰醇和土臭素年变化规律及其影响因素探索[J]. 净水技术, 2022, 41(S2): 1-7+41.
[2]  许高平. 两种GC-MS条件测定水中两种异味物质[J]. 城镇供水, 2020(6): 60-64+9.
[3]  周广安, 陈漪洁, 潘慧慧, 王晓芳. 全自动固相微萃取-气相色谱串联质谱法检测水中土臭素和2-甲基异莰醇[J]. 净水技术, 2021, 40(5): 46-50.
[4]  Wert, E.C., Korak, J.A., Trenholm, R.A., et al. (2013) Effect of Oxidant Exposure on the Re-lease of Intracellular Microcystin, MIB, and Geosmin from Three Cyanobacteria Species. Water Research, 52, 251-259.
https://doi.org/10.1016/j.watres.2013.11.001
[5]  邹剑敏, 卢奇, 桂源, 钟立强, 宋超, 陈家长. 养殖水体及水产品中土臭素、二甲基异莰醇的变化特征及原因初步分析[J]. 江苏农业学报, 2022, 38(1): 232-238.
[6]  李一兵, 方华, 韩正双, 田家宇. 活性炭指标对吸附去除2-MIB和土臭素效能的影响[J]. 工业水处理, 2021, 41(10): 91-96.
[7]  Huang, X., Shi, B.Y., Hao, H.T., et al. (2020) Identifying the Function of Activated Carbon Surface Chemical Properties in the Removability of Two Common Odor Compounds. Water Research, 178, Article ID: 115797.
https://doi.org/10.1016/j.watres.2020.115797
[8]  彭睿, 葛旭, 张文艺. 生活饮用水中2-甲基异莰醇与土臭素的快速分析方法[J]. 科技视界, 2020(4): 25-26.
[9]  何云峰, 李翠梅, 薛天一. 顶空固相微萃取-气相色谱-质谱法测定太湖水源水中嗅味物质土臭素、2-甲基异莰醇以及β-紫罗兰酮的含量[J]. 理化检验-化学分册, 2022, 58(5): 542-547.
[10]  成建国, 白敏冬, 刘开颖, 田一平, 张芝涛. 羟基自由基氧化降解水中土臭素的效率与机制[J]. 环境科学学报, 2018, 38(1): 234-241.
[11]  陈辉, 陈跃安, 余丽娟, 王志平, 刘莉莉, 何金旋. 黄浦江原水中土臭素冬季超标机制研究[J]. 环境科学学报, 2019, 39(4): 1134-1139.
[12]  杨海毅. 自动SPME-GCMS法分析生活饮用水中臭味物质土臭素和2-甲基异莰醇[J]. 皮革制作与环保科技, 2022, 3(2): 123-125.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133