全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon

DOI: 10.4236/ajps.2024.152005, PP. 57-82

Keywords: Agroecological Zone, Altitude Variations, Arbuscular Mycorrhizal Fungi, Soil Properties, Theobroma cacao

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%; p < 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.

References

[1]  Motamayor, J.C., Risterucci, M., Lopez, P., Ortiz, C.F., Moreno, A. and Lanaud, C. (2002) Cacao Domestication I: The Origin of the Cacao Cultivated by the Mayas. Heredity, 89, 380-386.
https://doi.org/10.1038/sj.hdy.6800156
[2]  ICCO (2023) Production of Cocoa Beans. ICCO Quarterly Bulletin of Cocoa Statistics, XLIX(3).
[3]  Kozicka, M., Tacconi, F., Horna, D. and Gotor, E. (2018) Forecasting Cocoa Yields for 2050. Bioversity International, Rome, 49 p.
https://hdl.handle.net/10568/93236
[4]  Sonwa, D.J., Weise, S., Adesina, A., Nkongmeneck, A.B., Tchatat, M. and Ndoye, O. (2005) Production Constraints on Cocoa Agroforestry Systems in West and Central Africa: The Need for Integrated Pest Management and Multi-Institutional Approaches. The Forestry Chronicle, 81, 345-349.
https://doi.org/10.5558/tfc81345-3
[5]  Suh, N.N. and Molua, E.L. (2022) Cocoa Production Under Climate Variability and Farm Management Challenges: Some Farmers’ Perspective. Journal of Agriculture and Food Research, 8, Article 100282.
https://doi.org/10.1016/j.jafr.2022.100282
[6]  Bomdzele, E. and Molua, E.L. (2023) Assessment of the Impact of Climate and Non-Climatic Parameters on Cocoa Production: A Contextual Analysis for Cameroon. Frontiers in Climate, 5, Article 1069514.
https://doi.org/10.3389/fclim.2023.1069514
[7]  Bae, H., Kim, S.H., Kim, M.S., Sicher, R.C., Lary, D., Strem, M.D., Natarajan, S. and Bailey, B.A. (2008) The Drought Response of Theobroma cacao (Cacao) and The Regulation of Genes Involved in Polyamine Biosynthesis by Drought and Other Stresses. Plant Physiology and Biochemistry, 46, 174-188.
https://doi.org/10.1016/j.plaphy.2007.10.014
[8]  Bekele, F. and Phillips-Mora, W. (2019) Cacao (Theobroma cacao L.) Breeding. In: Al-Khayri, J., Jain, S. and Johnson, D., Eds., Plant Breeding Strategies: Industrial and Food Crops, Springer, Cham, 409-483.
https://doi.org/10.1007/978-3-030-23265-8_12
[9]  Smith, S.E. and Read, D. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, Cambridge, MA, 1-787.
https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
[10]  Temegne, N.C., Wakem, G.A., Taffouo, V.D., Mbogne, T.J., Onguene, A.N., Youmbi, E. and Ntsomboh-Ntsefong, G. (2017) Effect of Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi in the Bambara Groundnut Rhizosphere. African Journal of Microbiology Research, 11, 1399-1410.
https://doi.org/10.5897/AJMR2017.8680
[11]  Bhantana, P., Rana, M.S., Sun, X. Cheng, Moussa, M.G., Saleem, M.H., Syaifudin, M., Shah, A., Poudel, A., Pun, A.B., Bhat, M.A., Mandal, D.L., Shah, S., Zhihao, D., Tan, Q. and Hu, C.X. (2021) Arbuscular Mycorrhizal Fungi and Its Major Role in Plant Growth, Zinc Nutrition, Phosphorous Regulation and Phytoremediation. Symbiosis, 84, 19-37.
https://doi.org/10.1007/s13199-021-00756-6
[12]  Kaba, S.J., Abunyewa, A.A., Kugbe, J., Kwashie, G.K.S., Owusu Ansah, E. and Andoh, H. (2021) Arbuscular Mycorrhizal Fungi and Potassium Fertilizer as Plant Biostimulants and Alternative Research for Enhancing Plants Adaptation to Drought Stress: Opportunities for Enhancing Drought Tolerance in Cocoa (Theobroma cacao L.). Sustainable Environment, 7, Article 1963927.
https://doi.org/10.1080/27658511.2021.1963927
[13]  Alam, M.Z., Choudhury, T.R. and Mridha, M.U. (2023) Arbuscular Mycorrhizal Fungi Enhance Biomass Growth, Mineral Content, and Antioxidant Activity in Tomato Plants under Drought Stress. Journal of Food Quality, 2023, Article ID: 2581608.
https://doi.org/10.1155/2023/2581608
[14]  Melo, C.D., Walker, C., Krüger, C., Borges, P.A.V., Luna, S., Mendonça, D., Fonseca, H.M.A.C. and Machado, A.C. (2019) Environmental Factors Driving Arbuscular Mycorrhizal Fungal Communities Associated with Endemic Woody Plant Picconiaazorica on Native Forest of Azores. Annals of Microbiology, 69, 1309-1327.
https://doi.org/10.1007/s13213-019-01535-x
[15]  Yang, W., Li, S., Wang, X., Liu, F., Li, X. and Zhu, X. (2021) Soil Properties and Geography Shape Arbuscular Mycorrhizal Fungal Communities in Black Land of China. Applied Soil Ecology, 167, Article 104109.
https://doi.org/10.1016/j.apsoil.2021.104109
[16]  Han, S., Wang, X., Cheng, Y., Wu, G., Dong, X., He, X. and Zhao, G. (2023) Multidimensional Analysis Reveals Environmental Factors That Affect Community Dynamics of Arbuscular Mycorrhizal Fungi in Poplar Roots. Frontiers in Plant Science, 13, 1068527.
https://doi.org/10.3389/fpls.2022.1068527
[17]  Vieira, L.C., Da Silva, D.K.A., Da Silva, I.R., Gonçalves, C.M., De Assis, D.M.A., Oehl, F. and Da Silva, G.A. (2019) Ecological Aspects of Arbuscular Mycorrhizal Fungal Communities in Different Habitat Types of a Brazilian Mountainous Area. Ecological Research, 34, 182-192.
https://doi.org/10.1111/1440-1703.1061
[18]  de Valgaz, A.P.F., Naranjo-Morán, J., Reyes, R.G., Oviedo-Anchundia, J., Ratti, T.M. and Barcos-Arias, M. (2022) Discovering the Diversity of Arbuscular Mycorrhizal Fungi Associated with Two Cultivation Practices of Theobroma cacao. Diversity, 14, Article 651.
https://doi.org/10.3390/d14080651
[19]  Amani, Y.F.C., M’Bo, K.A.A., Cherif, M. and Koné, D. (2023) Diversité des Champignons Mycorhiziens à Arbuscules Associés aux Cacaoyers (Theobroma cacao L.) en Côte d’Ivoire. European Scientific Journal, ESJ, 19, 179-202.
https://doi.org/10.19044/esj.2023.v19n27p179
[20]  Tchameni, S.N., Ngonkeu, M.E.L., Begoude, B.A.D., Wakam, N.L., Fokom, R., Owona, A.D., Mbarga, J.B., Tchana, T., Tondje, P.R., Etoa, F.X. and Kuaté, J. (2011) Effect of Trichoderma asperellum and Arbuscular Mycorrhizal Fungi on Cacao Growth and Resistance Against Black Pod Disease. Crop Protection, 30, 1321-1327.
https://doi.org/10.1016/j.cropro.2011.05.003
[21]  Djenatou, P., Patrick Ngoh Dooh, J., Philippe, K. and Leonard Ngonkeu Mangaptche, E. (2020) Evaluation of the Inoculation Effect of Arbuscular Mycorrhizal Fungi on the Growth of Cocoa Seedlings (Theobroma cacao L.) in the Nursery. International Journal of Sciences, 9, 6-13.
https://doi.org/10.18483/ijSci.2352
[22]  Djocgoue, P.F., Simo, C., Minyaka, E., Tassonf Saah, D., Njonzo-Nzo, S.A. and Taffouo, V.D. (2019) Influence of Gigaspora Margarita and Acaulospora Tuberculata on Tolerance to Phytophthora Megakarya in Theobroma Cacao under Plant Nursery Conditions. International Journal of Advance Agricultural Research, 7, 21-31.
[23]  Mbarga, J.B., Begoude, B.A.D., Ambang, Z., Meboma, M., Kuate, J., Ewbank, W. and ten Hoopen, G. (2020) Field Testing an Oil-Based Trichoderma asperellum Formulation for the Biological Control of Cacao Black Pod Disease, Caused by Phytophthora Megakarya. Crop Protection, 132, Article 105134.
https://doi.org/10.1016/j.cropro.2020.105134
[24]  Huang, S.P. and Cares, J.E. (2004) The Role of Nematodes in Maintaining Soil Fertility. BGBD Biannual Newsletter of the TSBF-CIAT 1, pp. 14-16.
[25]  Stokes, G.G. (1851) On the Effect of the Lateral Friction of Fluids on the Motion of Pendulums. Transactions of Cambridge Philosophy and Society, 9, 8-106.
[26]  Jones, J.B. (1987) Nitrogen: Kjeldahl Nitrogen Determination—What’s in a Name. Journal of Plant Nutrition, 10, 1675-1682.
https://doi.org/10.1080/01904168709363706
[27]  Pauwels, J.M., Van Ranst, E., Verloo, M. and Mvendo Z.A. (1992) Manuel de laboratoire de pédologie. Méthodes d’analyses de sols et de plantes, équipements, gestion de stocks de verrerie et de produits chimiques. Vol. 28, AGCD Publications Agricoles, 265 p.
[28]  Calvet, G. and Villemin, P. (1986) Interprétation des analyses de terre. IPAS, SADEF, SCPA (ed.), Aspach le Bas, 25 p.
[29]  Beernaert, F. and Bitondo, D. (1992) Sample and Practical Methods to Evaluate Analytical Data of Soil Profiles. Belgian Cooperation University of Dschang, Dschang, Cameroon, 66 p.
[30]  Morton, J.B. (1993) Problems and Solutions for the Integration of Glomalean Taxonomy, Systematic Biology, and the Study of Endomycorrhizal Phenomena. Mycorrhiza, 2, 97-109.
https://doi.org/10.1007/BF00203855
[31]  Gerdemann, J.W. and Nicolson, T.H. (1963) Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Transactions of the British Mycological Society, 46, 235-244.
https://doi.org/10.1016/S0007-1536(63)80079-0
[32]  INVAM (2023) Enumeration of Spores. International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. West Virginia University, Morgantown.
https://invam.wvu.edu/methods/spores/enumeration-of-spores
[33]  Phillips, J.M. and Hayman, D.S. (1970) Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Transactions of the British Mycological Society, 55, 158-161.
https://doi.org/10.1016/S0007-1536(70)80110-3
[34]  Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V. (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Physiological and Genetical Aspects of Mycorrhizae, INRA, Paris, 217-220.
[35]  Al Hallaq, A.H. (2010) The Impact of Soil Texture on Nitrates Leaching into Groundwater in the North Governorate, Gaza Strip. Journal of the Social Sciences, 38, 11-35.
https://www.researchgate.net/publication/287607413
[36]  Rajakaruna, N. and Boyd, R.S. (2018) Edaphic Factor. Encyclopedia of Ecology, 3, 361-367.
https://doi.org/10.1016/B978-0-12-409548-9.11159-5
[37]  Gelaye, K.K., Zehetner, F., Loiskandl, W. and Klik, A. (2019) Effects of Soil Texture and Groundwater Level on Leaching of Salt from Saline Fields in Kesem Irrigation Scheme, Ethiopia. Soil and Water Research, 14, 221-228.
https://doi.org/10.17221/137/2018-SWR
[38]  Mossu, G. (1990) Le cacaoyer. CIRAD (Ed). Maisonneuve et Larose, Montpellier-France, 82 p.
[39]  Hanak, F.E., Petithuguenin, P. and Richard, J. (2000) Les champs du cacao. Un défi de compétitivité Afrique-Asie. KARTHALA (Paris) et CIRAD (Montpellier), 213 p.
[40]  Rousseau, G.X., Deheuvels, O., Rodriguez, A.I. and Somarriba, E. (2012) Indicating Soil Quality in Cacao-Based Agroforestry Systems and Old-Growth Forests: The Potential of Soil Macrofauna Assemblage. Ecological Indicators, 23, 535-543.
https://doi.org/10.1016/j.ecolind.2012.05.008
[41]  Magdoff, F. and Weil, R. (2004) Soil Organic Matter Management Strategies. In: Magdoff, F. and Weil, R., Eds., Soil Organic Matter in Sustainable Agriculture, CRC Press, Boca Raton, 45-65.
[42]  Smith, J.L. and Doran, J.W. (2015) Measurement and Use of pH and Electrical Conductivity for Soil Quality Analysis. In: Doran, J.W and Jones, A.J., (Eds.), Methods for Assessing Soil Quality, Soil Science Society of America Journal, SSSA, Madison, 169-185.
https://doi.org/10.2136/sssaspecpub49.c10
[43]  Saad, M.M., Eida, A.A., Hirt, H. and Doerner, P. (2020) Tailoring Plant-Associated Microbial Inoculants in Agriculture: A Roadmap for Successful Application. Journal of Experimental Botany, 71, 3878-3901.
https://doi.org/10.1093/jxb/eraa111
[44]  Gougoulias, C., Clark, J.M. and Shaw, L.J. (2014) The Role of Soil Microbes in the Global Carbon Cycle: Tracking The Below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94, 2362-2371.
https://doi.org/10.1002/jsfa.6577
[45]  Snoeck, D., Koko, L., Joffre, J., Bastide, P. and Jagoret, P. (2016) Cacao Nutrition and Fertilization. In: Lichtfouse, E., Ed., Sustainable Agriculture Reviews, Springer, Cham, 155-202.
https://doi.org/10.1007/978-3-319-26777-7_4
[46]  Nguemezi, C., Tematio, P., Yemefack, M., Tsozue, D. and Silatsa, T.B.F. (2020) Soil Quality and Soil Fertility Status in Major Soil Groups at the Tombel Area, South-West Cameroon. Heliyon, 6, e03432.
https://doi.org/10.1016/j.heliyon.2020.e03432
[47]  Egbe, N., Olatoye, S. and Obatolu, C. (1989) Impact of Rate and Types of Fertilizers on Productivity and Nutrient Cycling in Tree Crop Plantation Ecosystem. MAB Workshop, Abuja, Nigeria, 7-10.
[48]  Aikpokpodion, P.E. (2010) Nutrients Dynamics in Cocoa Soils, Leaf and Beans in Ondo State. Nigerian Journal Agricultural Science, 1, 1-9.
https://doi.org/10.1080/09766898.2010.11884647
[49]  Boyer, J. (1973) Cycles de la matière organique et des éléments minéraux dans une cacaoyère camerounaise. Café Cacao Thé, 17, 4-24.
[50]  Hartemink, A.E. (2005) Nutrient Stocks, Nutrient Cycling, and Soil Changes in Cocoa Ecosystems: A Review. Advances in Agronomy, 86, 227-253.
https://doi.org/10.1016/S0065-2113(05)86005-5
[51]  Ge, S., Xu, H., Ji, M. and Jiang, Y. (2013) Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards. Open Journal of Soil Science, 3, 213-217.
https://doi.org/10.4236/ojss.2013.35025
[52]  Bationo, A., Mugbogho, S.K. and Mokwunye, A.U. (1986) Agronomic Evaluation of Phosphate Fertilizers in Tropical Africa. In: Mokwunye, A. and Vleck, P.L.G., Eds., Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa, Springer, Dordrecht, 283-318.
https://doi.org/10.1007/978-94-009-4398-8_10
[53]  Krüger, M., Teste, F.P., Laliberté, E., Lambers, H., Coghlan, M., Zemunik, G. and Bunce, M. (2015) The Rise and Fall of Arbuscular Mycorrhizal Fungal Diversity during Ecosystem Retrogression. Molecular Ecology, 24, 4912-4930.
https://doi.org/10.1111/mec.13363
[54]  Qin, Z., Zhang, H., Feng, G., Christie, P., Zhang, J., Li, X. and Gai, J. (2020) Soil Phosphorus Availability Modifies the Relationship between AM Fungal Diversity and Mycorrhizal Benefits to Maize in an Agricultural Soil. Soil Biology and Biochemistry, 144, Article 107790.
https://doi.org/10.1016/j.soilbio.2020.107790
[55]  Garo, G., Van Geel, M., Eshetu, F., Swennen, R., Honnay, O. and Vancampenhout, K. (2021) Arbuscular Mycorrhizal Fungus Communities and Their Response to Soil Phosphorous Differ between Wild and Domesticated Enset (Ensete ventricosum) in Southern Ethiopia. Rhizosphere, 20, Article 100444.
https://doi.org/10.1016/j.rhisph.2021.100444
[56]  Ngnipa, R.T., Tabi, F.O., Adamou, S., Tamfuh, P.A., Kome, G.K., Boukong, A., David, A. and Ze, M. (2021) Relationship between Selected Soil Physico-Chemical Characteristics and Mycorrhizal Status under Triumfetta cordifolia in the Cameroon Western Highlands. Open Journal of Soil Science, 11, 216-240.
https://doi.org/10.4236/ojss.2021.114012
[57]  Parvin, S., Van Geel, M., Ali, M.M., Yeasmin, T., Lievens, B. and Honnay, O. (2021) A Comparison of the Arbuscular Mycorrhizal Fungal Communities among Bangladeshi Modern High Yielding and Traditional Rice Varieties. Plant and Soil, 462, 109-124.
https://doi.org/10.1007/s11104-021-04858-4
[58]  Chiu, C.H. and Paszkowski, U. (2019) Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in Biology, 11, a034603.
https://doi.org/10.1101/cshperspect.a034603
[59]  Sheng, M., Lalande, R., Hamel, C. and Ziadi, N. (2013) Effect of Long-Term Tillage and Mineral Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi in a Humid Continental Zone of Eastern Canada. Plant and Soil, 369, 599-613.
https://doi.org/10.1007/s11104-013-1585-4
[60]  Jerbi, M., Labidi, S., Bahri, B.A., Laruelle, F., Tisserant, B., Ben Jeddi, F. and Lounes-Hadj Sahraoui, A. (2021) Soil Properties and Climate Affect Arbuscular Mycorrhizal Fungi and Soil Microbial Communities in Mediterranean Rainfed Cereal Cropping Systems. Pedobiologia, 87-88, Article 150748.
https://doi.org/10.1016/j.pedobi.2021.150748
[61]  Marschner, P., Solaiman, Z. and Rengel, Z. (2005) Growth, Phosphorus Uptake, and Rhizosphere Microbial-Community Composition of a Phosphorus-Efficient Wheat Cultivar in Soils Differing in pH. Journal of Plant Nutrition and Soil Science, 168, 343-351.
https://doi.org/10.1002/jpln.200424101
[62]  Yang, M., Shi, Z., Mickan, B.S., Zhang, M. and Cao, L. (2021) Alterations to Arbuscular Mycorrhizal Fungal Community Composition Is Driven by Warming at Specific Elevations. PeerJ, 9, e11792.
https://doi.org/10.7717/peerj.11792
[63]  Zhang, M., Yang, M., Shi, Z., Gao, J. and Wang, X. (2022) Biodiversity and Variations of Arbuscular Mycorrhizal Fungi Associated with Roots along Elevations in Mt. Taibai of China. Diversity, 14, Article 626
https://doi.org/10.3390/d14080626
[64]  Shara, S., Swennen, R., Deckers, J., Weldesenbet, F., Vercammen, L., Eshetu, F., Woldeyes, F., Blomme, G., Merckx, R. and Vancampenhout, K. (2021) Altitude and Management Affect Soil Fertility, Leaf Nutrient Status and Xanthomonas Wilt Prevalence in Enset Gardens. Soil, 7, 1-14.
https://doi.org/10.5194/soil-7-1-2021

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133