全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Deconvolution Method for Obtaining Correspondence in Data-Independent Acquisition Mass Spectrometry Data

DOI: 10.4236/jcc.2024.122002, PP. 11-25

Keywords: MS/MS Spectra, XICs, Correspondence, Matrix, Isotopic Peak Cluster

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although data-independent acquisition (DIA) shows powerful potential in achieving comprehensive peptide information acquisition, the difficulty in determining the precursor m/z and distinguishing fragment ions has posed challenges in DIA data analysis. To address this challenge, a common approach is to recover the correspondence between precursor ions and fragment ions, followed by peptide identification using traditional data-dependent acquisition (DDA) database searching. In this study, we propose a cosine similarity-based deconvolution method that rapidly establishes the correspondence between chromatographic profiles of precursor ions and fragment ions through matrix calculations. Experimental results demonstrate that our method, referred to as CosDIA, yields a peptide identification count close to that of DIA-umpire. However, compared to DIA-umpire, we can establish the correspondence between original MS/MS spectra and pseudo-MS/MS spectra. Furthermore, compared to the CorrDIA method, our approach achieves higher efficiency in terms of time, reducing the time cost of the analysis process. These results highlight the potential advantages of the CosDIA method in DIA data analysis, providing a powerful tool and method for large-scale proteomics research.

References

[1]  Steen, H. and Mann, M. (2004) The ABC’s (and XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology, 5, 699-711.
https://doi.org/10.1038/nrm1468
[2]  Bilbao, A., Varesio, E., et al. (2015) Processing Strategies and Software Solutions for Data-Independent Acquisition in Mass Spectrometry. Proteomics, 15, 964-80.
https://doi.org/10.1002/pmic.201400323
[3]  Aebersold, R. and Mann, M. (2016) Mass-Spectrometric Exploration of Proteome Structure and Function. Nature, 537, 347-55.
https://doi.org/10.1038/nature19949
[4]  Li, X., Wang, W.Q. and Chen, J.J. (2017) Recent Progress in Mass Spectrometry Proteomics for Biomedical Research. Science China Life Sciences, 60, 1093-1113.
https://doi.org/10.1007/s11427-017-9175-2
[5]  Ludwig, C., et al. (2018) Data-Independent Acquisition-Based SWATH-MS for Quantitative Proteomics: A Tutorial. Molecular Systems Biology, 14, e8126.
https://doi.org/10.15252/msb.20178126
[6]  Röst, H.L., et al. (2014) OpenSWATH Enables Automated, Targeted Analysis of Data-Independent Acquisition MS Data. Nature Biotechnology, 32, 219-23.
https://doi.org/10.1038/nbt.2841
[7]  Hou, X.-H., et al. (2022) Progress in Data Analysis Methods for Proteome Mass Spectrometry Based on Data-Independent Acquisition. Progress in Biochemistry and Biophysics, 49, 2364-2386.
[8]  Bern, M., Finney, G., et al. (2010) Deconvolution of Mixture Spectra from Ion-Trap Data-Independent-Acquisition Tandem Mass Spectrometry. Analytical Chemistry, 82, 833-41.
https://doi.org/10.1021/ac901801b
[9]  Tsou, C.-C., et al. (2015) DIA-Umpire: Comprehensive Computational Framework for Data-Independent Acquisition Proteomics. Nature Methods, 12, 258-264.
https://doi.org/10.1038/nmeth.3255
[10]  Li, Y.Y., et al. (2015) Group-DIA: Analyzing Multiple Data-Independent Acquisition Mass Spectrometry Data Files. Nature Methods, 12, 1105-1106.
https://doi.org/10.1038/nmeth.3593
[11]  Tada, I., et al. (2020) Correlation-Based Deconvolution (CorrDec) to Generate High-Quality MS2 Spectra from Data-Independent Acquisition in Multisample Studies. Analytical Chemistry, 92, 11310-11317.
https://doi.org/10.1021/acs.analchem.0c01980
[12]  Tsugawa, H., et al. (2015) MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nature Methods, 12, 523-526.
https://doi.org/10.1038/nmeth.3393
[13]  Tsugawa, H., et al. (2020) A Lipidome Atlas in MS-DIAL 4. Nature Biotechnology, 38, 1159-1163.
https://doi.org/10.1038/s41587-020-0531-2
[14]  Shao, G.C., et al. (2021) How to Use Open-pFind in Deep Proteomics Data Analysis?—A Protocol for Rigorous Identification and Quantitation of Peptides and Proteins from Mass Spectrometry Data. Biophysics Reports, 7, 207-226.
https://doi.org/10.52601/bpr.2021.210004
[15]  Meier, F., et al. (2020) diaPASEF: Parallel Accumulation-Serial Fragmentation Combined with Data-Independent Acquisition. Nature Methods, 17, 1229-1236.
https://doi.org/10.1038/s41592-020-00998-0
[16]  Messner, C.B., et al. (2021) Ultra-Fast Proteomics with Scanning SWATH. Nature Biotechnology, 39, 846-854.
https://doi.org/10.1038/s41587-021-00860-4
[17]  Chowdhury, G.G. (2010) Introduction to Modern Information Retrieval. Facet Publishing, London.
[18]  Hao, C., et al. (2018) Open-pFind Enables Precise, Comprehensive and Rapid Peptide Identification in Shotgun Proteomics. BioRxiv, Article ID: 285395.
[19]  Lu, Y.Y., et al. (2021) DIAmeter: Matching Peptides to Data-Independent Acquisition Mass Spectrometry Data. Bioinformatics, 37, i434-i442.
https://doi.org/10.1093/bioinformatics/btab284
[20]  Tran, N.H., et al. (2019) Deep Learning Enables de Novo Peptide Sequencing from Data-Independent-Acquisition Mass Spectrometry. Nature Methods, 16, 63-66.
https://doi.org/10.1038/s41592-018-0260-3
[21]  Demichev, V., et al. (2020) DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nature Methods, 17, 41-44.
https://doi.org/10.1038/s41592-019-0638-x
[22]  Zhang, X., Wu, R.T. and Qu, Z.J. (2023) A Cosine-Similarity-Based Deconvolution Method for Analyzing Data-Independent Acquisition Mass Spectrometry Data. Applied Sciences, 13, Article 5969.
https://doi.org/10.3390/app13105969
[23]  Meyer, J.G. (2021) Deep Learning Neural Network Tools for Proteomics. Cell Reports Methods, 1, Article ID: 100003.
https://doi.org/10.1016/j.crmeth.2021.100003
[24]  He, Q.Z., et al. (2023) Dear-DIAXMBD: Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics. Research (Washington, D.C.), 6, Article ID: 0179.
https://doi.org/10.34133/research.0179

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413