全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铝粉掺量对微膨胀UHPC力学性能及工作性的影响
The Effect of Aluminum Powder Content on the Mechanical Properties and Workability of Micro Expanded UHPC

DOI: 10.12677/HJCE.2024.132019, PP. 146-153

Keywords: 超高性能混凝土,铝粉,工作性能,力学性能,微膨胀
Ultra High Performance Concrete
, Aluminum Powder, Workability, Mechanical Properties, Micro Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于装配式地下车站二次结构湿接缝的结构需求,研究铝粉掺量对于微膨胀UHPC的流动性、膨胀率、干密度、力学性能及气孔形态等性能的影响。在超高性能混凝土(UHPC)中掺入0.005%、0.010%和0.015%质量分数的铝粉。随着铝粉掺量的增大,微膨胀UHPC的流动性和膨胀率明显提升,干密度下降;微膨胀UHPC的抗压强度分别为123.97、121.00和109.60 MPa,下降率分别为12.58%、14.67%、22.71%,但对抗折强度的影响较小。当铝粉掺量为0.005%时,微膨胀UHPC能够在保证力学性能的情况下具有较为合适的膨胀率,适用于装配式地下车站二次结构湿接缝。
This study aims to investigate the impact of aluminum powder content on the flowability, expansion rate, bulk density, mechanical properties, and pore morphology of micro-expansive Ultra-High Performance Concrete (UHPC) for wet joints in prefabricated underground stations. Aluminum powder was added to UHPC at mass fractions of 0.005%, 0.010%, and 0.015% respectively. With the increase in aluminum powder content, the flowability and expansion rate of micro-expansive UHPC significantly improved, while the bulk density decreased. The compressive strengths of micro-expansive UHPC were 123.97 MPa, 121.00 MPa, and 109.60 MPa respectively, with corresponding reduction rates of 12.58%, 14.67%, and 22.71%. However, the influence on flexural strength was relatively small. When the aluminum powder content was 0.005%, micro-expansive UHPC exhibited a suitable expansion rate while maintaining adequate mechanical performance, making it suitable for wet joints in prefabricated underground stations.

References

[1]  殷雨时, 杨纪, 苏庆田, 等. 装配式节段梁UHPC湿接缝界面力学性能数值模拟分析[J]. 大连理工大学学报, 2023, 63(1): 77-85.
[2]  王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1): 141-149.
https://doi.org/10.16552/j.cnki.issn1001-1625.2016.01.026
[3]  Shi, C.J., Wu, Z.M., Xiao, J.F., Wang, D.H., Huang, Z.Y. and Fang, Z. (2015) A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design. Construction and Building Materials, 101, 741-751.
https://doi.org/10.1016/j.conbuildmat.2015.10.088
[4]  陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20.
[5]  Yaz?c?, H., Yard?mc?, M.Y., Ayd?n, S. and Karabulut, A.?. (2008) Mechanical Properties of Reactive Powder Concrete Containing Mineral Admixtures under Different Curing Regimes. Construction and Building Materials, 23, 1223-1231.
https://doi.org/10.1016/j.conbuildmat.2008.08.003
[6]  陈宝春, 李聪, 黄伟, 安明喆, 韩松, 丁庆军. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28.
https://doi.org/10.19818/j.cnki.1671-1637.2018.01.002
[7]  Yang, L., Shi, C.J. and Wu, Z.M. (2019) Mitigation Techniques for Autogenous Shrinkage of Ultra-High-Performance Concrete—A Review. Composites Part B: Engineering, 178, Article 107456.
https://doi.org/10.1016/j.compositesb.2019.107456
[8]  Altoubat, S.A. and Lange, D.A. (2001) Tensile Basic Creep: Measurements and Behavior at Early Age. ACI Materials Journal, 98, 386-393.
https://doi.org/10.14359/10728
[9]  徐晨, 卢毅, 马骉, 等. 含湿接缝的钢-UHPC组合桥面板收缩效应[J]. 哈尔滨工业大学学报, 2022, 54(9): 17-26.
[10]  郑志, 田进, 徐宁. 生石灰形成机理及在蒸压加气混凝土砌块生产中与铝粉发气配合分析[J]. 广东化工, 2018, 45(7): 172-173.
[11]  中华人民共和国国家质量监督检验检疫总局. 混凝土外加剂匀质性试验方法: GB/T 8077-2012[S]. 北京: 中国标准出版社, 2013.
[12]  国家市场监督管理总局. 水泥胶砂强度检验方法: GB/T 17671-2021 [S]. 北京: 中国标准出版社, 2022.
[13]  郑秀华, 张宝生, 袁杰, 等. 引气剂与粉煤灰对大流动性轻集料混凝土性能的影响[J]. 混凝土, 2005(4): 88-92.
[14]  李F.M. 水泥和混凝土化学[M]. 唐明述, 等, 译. 北京: 中国工业出版社, 1966.
[15]  孙小巍, 张雯琪, 杨林, 回志峰, 吴昌鹏, 戚红. 石墨尾矿蒸压加气混凝土性能研究[J]. 非金属矿, 2022, 45(5): 92-96.
[16]  张美霞, 杨朝刚, 张慧月, 等. 加气混凝土砌块用生石灰的改性研究[J]. 中国资源综合利用, 2023, 41(12): 25-27.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413