|
光伏直驱空气源热泵双介质暖风机运行实验研究
|
Abstract:
随着“双碳”愿景的提出,太阳能光伏直驱空气源热泵的研究在不断深入。为验证太阳能光伏直驱空气源热泵与热水供暖、制冷系统联合运行的可行性,搭建了具有双介质暖风机的光伏直驱空气源热泵系统,对石家庄市鹿泉区某独立建筑进行供暖、制冷,实时记录系统能耗。利用DeST软件模拟该建筑全年冷、热负荷,阐述系统运行模式及性能评价方法,与其他供暖、制冷方式进行能耗对比。研究得出该系统较电暖气采暖节省运行费用79.66%,较普通空气源热泵、光伏直驱空气源热泵全年运行能耗降低15.45%,市电消耗量分别降低57.77%、26.79%。搭载双介质暖风机的光伏直驱空气源热泵系统可行、节能效果明显、经济效益显著,双介质系统避免室外循环管路受低温影响冻结,并具有进一步提升效率的可行性。
With the introduction of the goals of carbon peaking and carbon neutrality, research on photovoltaic direct-drive air source heat pumps has been expanding. To investigate the feasibility of photovoltaic direct-drive air source heat pumps for simultaneous heating, cooling, and hot water provision, a new system with heaters having two different heat transfer media was built in a separate building in Luquan District, Shijiazhuang City. The real-time energy consumption of the system was recorded. Simulate the annual cooling and heating loads of this building using DeST software; describe the operation mode and performance evaluation method of the new system; compare the energy consumption with other heating and cooling methods. The study concludes that the system reduces operating costs by 79.66% compared to electric heating. The new system reduces annual operating energy consumption by 15.45% compared to ordinary air source heat pumps and photovoltaic direct-drive air source heat pumps, and reduces grid consumption by 57.77% and 26.79%, respectively. The feasibility of the new system is evident with a significant energy-saving impact and noticeable economic benefits. The new system effectively prevents outdoor circulating pipelines from freezing due to low temperatures thereby increasing efficiency.
[1] | 熊兴. “双碳”目标下全球能源治理改革的中国方案[J]. 社会主义研究, 2022(1): 155-162. |
[2] | 陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11): 25-39. |
[3] | Yao, J., Dou, P.B., et al. (2022) Co-Generation Ability Investigation of the Novel Structured PVT Heat Pump System and Its Effect on the “Carbon Neutral” Strategy of Shanghai. Energy, 239, Article 121863.
https://doi.org/10.1016/j.energy.2021.121863 |
[4] | Zhang, Y.C., Xia, J.J., Fang, H., Jiang, Y. and Liang. Z.W. (2020) Field Tests on the Operational Energy Consumption of Chinese District Heating Systems and Evaluation of Typi-cal Associated Problems. Energy and Buildings, 224, Article 110269. https://doi.org/10.1016/j.enbuild.2020.110269 |
[5] | 徐向宇, 徐政, 李光明. 光伏空气源热泵的研究与开发[J]. 太阳能学报, 2022, 43(1): 356-361. |
[6] | 张东, 刘鹏飞, 刘春阳, 等. 太阳能PV/T光储直驱热电联产系统性能[J]. 化工进展, 2023, 42(6): 2895-2903.
https://doi.org/10.16085/j.issn.1000-6613.2022-1467 |
[7] | 张思亮, 祁麟童, 曲浩维, 等. 光伏发电辅助空气源热泵供暖系统研究[J/OL]. 综合智慧能源, 1-11.
http://kns.cnki.net/kcms/detail/41.1461.TK.20230901.1840.004.html, 2023-12-17. |
[8] | 王恩宇, 程永昌, 张学友, 等. 光伏直驱的太阳能跨季节储热系统试验研究[J]. 可再生能源, 2023, 41(9): 1181-1187. https://doi.org/10.13941/j.cnki.21-1469/tk.2023.09.009 |
[9] | 闪锦淮. 光伏直驱空调系统性能的理论与实验研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2021.
https://doi.org/10.27670/d.cnki.gcqdu.2021.003739 |
[10] | 彭胜男. 适用于北方农村独立民居的光伏——空气源热泵联合供热系统研究[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2018. |
[11] | 刘家琦. 太阳能和空气源热泵联合供热系统[J]. 洁净与空调技术, 2022(2): 81-83. |
[12] | 王良, 李明, 韩友华, 等. 光伏直驱空气源热泵储能供暖性能分析[J]. 太阳能学报, 2020, 41(10): 159-166. |
[13] | Sterling, S.J. and Collins, M.R. (2012) Feasibility Analysis of an Indirect Heat Pump Assisted Solar Domestic Hot Water System. Applied Energy, 93, 11-17. https://doi.org/10.1016/j.apenergy.2011.05.050 |
[14] | 贡静宝. 太阳能-空气源双热源复合热泵系统运行特性及优化控制研究[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2021. |
[15] | 王满鹏. 太阳能辅助空气源热泵系统的TRNSYS动态模拟[J]. 甘肃科技纵横, 2022, 51(5): 29-32. |
[16] | 耿秀, 胥小龙, 刘馨, 等. 太阳能与空气源热泵耦合供热系统运行特性分析[J]. 建设科技, 2022(10): 82-85. |
[17] | 马坤茹, 李雪峰, 李思琦, 等. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381. |
[18] | James, A., Srinivas, M., et al. (2021) Experimental Studies on Photovoltaic-Thermal Heat Pump Water Heaters Using Variable Frequency Drive Com-pressors. Sustainable Energy Technologies and Assessments, 45, Article 101152.
https://doi.org/10.1016/j.seta.2021.101152 |
[19] | Zhang, S., He, W., et al. (2022) Field Experimental Investigation on Electricity and Thermal Performances of a Large Scale Photovoltaic Solar-Thermal Direct Expansion Heat Pump Sys-tem. Energy Conversion and Management, 267, Article 115941. https://doi.org/10.1016/j.enconman.2022.115941 |