全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low Level of Cystic Fibrosis Transmembrane Conductance Regulator Is Associated with Human Sperm Autophagy and Vitality

DOI: 10.4236/arsci.2024.121003, PP. 23-36

Keywords: Autophagy, CFTR, Sperm, Vitality

Full-Text   Cite this paper   Add to My Lib

Abstract:

Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CFTRinh-172 or forskolin (FSK) in this study were used to treat human sperm separately, and the rates of sperm autophagy and progressive motility, mitochondrial membrane potential (MMP) and ATP concentration, and the expression levels of related factors were detected to explore their relationship. It was showed that sperms treated with CFTRinh-172 or FSK reduced the levels of cAMP, CFTR and PKA, but increased sperm autophagy rate, expression levels of AMPK and LC3B. However, reactive oxygen species content had no significant difference. It was indicated that low level of CFTR performed with cAMP and its downstream effectors such as PKA and AMPK to regulate mitochondrial structure and function, leading to increased autophagy rate and reduced vitality of sperm.

References

[1]  Wang, M., Zeng, L., Su, P., Ma, L., Zhang, M. and Zhang, Y.Z. (2022) Autophagy: A Multifaceted Player in the Fate of Sperm. Human Reproduction Update, 28, 200-231.
https://doi.org/10.1093/humupd/dmab043
[2]  Pereira, R. and Sousa, M. (2023) Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel), 14, 383-407.
https://doi.org/10.3390/genes14020383
[3]  Huang, Q., Liu, Y., Zhang, S., Yap, Y.T., Li, W., Zhang, D., et al. (2021) Autophagy Core Protein ATG5 Is Required for Elongating Spermatid Development, Sperm Individualization and Normal Fertility in Male Mice. Autophagy, 17, 1753-1767.
https://doi.org/10.1080/15548627.2020.1783822
[4]  Rasmussen, L.W., Stanford, D., Patel, K. and Raju, S.V. (2020) Evaluation of Secondhand Smoke Effects on CFTR Function in Vivo. Respiratory Research, 21, 70-83.
https://doi.org/10.1186/s12931-020-1324-3
[5]  Carlile, G.W., Yang, Q., Matthes, E., Liao, J., Birault, V., Sneddon, H.F., et al. (2022) The NSAID Glafenine Rescues Class 2 CFTR Mutants via Cyclooxygenase 2 Inhibition of the Arachidonic Acid Pathway. Scientific Reports, 12, 4595-4604.
https://doi.org/10.1038/s41598-022-08661-8
[6]  Siwiak, M., Edelman, A. and Zielenkiewicz, P. (2012) Structural Models of CFTR- AMPK and CFTR-PKA Interactions: R-Domain Flexibility Is a Key Factor in CFTR Regulation. Journal of Molecular Modeling, 18, 83-90.
https://doi.org/10.1007/s00894-011-1029-0
[7]  Puga Molina, L.C., Pinto, N.A., Torres, N.I., González-Cota, A.L., Luque, G.M., Balestrini, P.A., et al. (2018) CFTR/ENaC-Dependent Regulation of Membrane Potential during Human Sperm Capacitation Is Initiated by Bicarbonate Uptake through NBC. Journal of Biological Chemistry, 293, 9924-9936.
https://doi.org/10.1074/jbc.RA118.003166
[8]  Calle-Guisado, V., Hurtado de Llera, A., González-Fernández, L., Bragado, M.J. and Gar-cia-Marin, L.J. (2017) Human Sperm Motility Is Downregulated by the AMPK Activator A769662. Andrology, 5, 1131-1140.
https://doi.org/10.1111/andr.12423
[9]  Pérez-Díaz, A.J., Vázquez-Marín, B., Vicente-Soler, J., Prieto-Ruiz, F., Soto, T., Franco, A., et al. (2023) cAMP-Protein Kinase A and Stress-Activated MAP Kinase Signaling Mediate Transcriptional Control of Autophagy in Fission Yeast during Glucose Limitation or Starvation. Autophagy, 19, 1311-1331.
https://doi.org/10.3389/fpls.2023.1288386
[10]  Kopeikin, Z., Sohma, Y., Li, M. and Hwang, T.C. (2010) On the Mechanism of CFTR Inhibition by a Thiazolidinone Derivative. Journal of General Physiology, 136, 659-671.
https://doi.org/10.1085/jgp.201010518
[11]  Sapio, L., Gallo, M., Illiano, M., Chiosi, E., Naviglio, D., Spina, A., et al. (2017) The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time? Journal of Cellular Physiology, 232, 922-927.
https://doi.org/10.1002/jcp.25650
[12]  Maiuri, L., Raia, V., Piacentini, M., Tosco, A., Villella, V.R. and Kroemer, G. (2019) Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Autophagy: Hereditary Defects in Cystic Fibrosis versus Gluten-Mediated Inhibition in Celiac Disease. Oncotarget, 10, 4492-4500.
https://doi.org/10.18632/oncotarget.27037
[13]  Jiang, L.Y., Shan, J.J., Tong, X.M., Zhu, H.Y., Yang, L.Y., Zheng, Q., et al. (2014) Cystic Fibrosis Transmembrane Conductance Regulator Is Correlated Closely with Sperm Progressive Motility and Normal Morphology in Healthy and Fertile Men with Normal Sperm Parameters. Andrologia, 46, 824-830.
https://doi.org/10.1111/and.12155
[14]  Ooi, C.Y. and Durie, P.R. (2016) Cystic Fibrosis from the Gastroenterologist’s Perspective. Nature Reviews Gastroenterology & Hepatology, 13, 175-185.
https://doi.org/10.1038/nrgastro.2015.226
[15]  Villella, V.R., Esposito, S., Ferrari, E., Monzani, R., Tosco, A., Rossin, F., et al. (2019) Autophagy Suppresses the Pathogenic Immune Response to Dietary Antigens in Cystic Fibrosis. Cell Death & Disease, 10, 258-268.
https://doi.org/10.1038/s41419-019-1500-x
[16]  Flores-Vega, V.R., Vargas-Roldán, S.Y., Lezana-Fernández, J.L., Lascurain, R., Santos-Preciado, J.I., et al. (2021) Bacterial Subversion of Autophagy in Cystic Fibrosis. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 760922.
https://doi.org/10.3389/fcimb.2021.760922
[17]  Tosco, A., De Gregorio, F., Esposito, S., De Stefano, D., Sana, I., Ferrari, E., et al. (2016) A Novel Treatment of Cystic Fibrosis Acting On-Target: Cysteamine plus Epigallocatechin Gallate for the Autophagy-Dependent Rescue of Class II-Mutated CFTR. Cell Death & Differentiation, 23, 1380-1393.
https://doi.org/10.1038/cdd.2016.43
[18]  Caution, K., Pan, A., Krause, K., Badr, A., Hamilton, K., Vaidya, A., et al. (2019) Methylomic Correlates of Autophagy Activity in Cystic Fibrosis. Journal of Cystic Fibrosis, 18, 491-500.
https://doi.org/10.1016/j.jcf.2019.01.011
[19]  Zhang, Y., Li, Y. and Wang, Y. (2019) Forskolin Induces Autophagy and Apoptosis in Human Liver Cancer Cells by Inhibiting the PI3K/AKT/mTOR Pathway. Oncology Reports, 42, Article No. 12.
[20]  Deng, C., Lv, M., Luo, B., Zhao, S.Z., Mo, Z.C. and Xie, Y.J. (2021) The Role of the PI3K/AKT/mTOR Signalling Pathway in Male Reproduction. Current Molecular Medicine, 21, 539-548.
https://doi.org/10.1038/s41598-022-06384-4
[21]  Wang, Y., Li, T., Cao, H. and Yang, W. (2019) Recent Advances in the Neuroprotective Effects of Medical Gases. Medical Gas Research, 9, 80-87.
https://doi.org/10.2174/1566524020666201203164910
[22]  Barati, E., Nikzad, H. and Karimian, M. (2020) Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management. Cellular and Molecular Life Sciences, 77, 93-113.
https://doi.org/10.1007/s00018-019-03253-8
[23]  Jannatifar, R., Parivar, K., Roodbari, N.H. and Nasr-Esfahani, M.H. (2019) Effects of N-acetyl-cysteine Supplementation on Sperm Quality, Chromatin Integrity and Level of Oxidative Stress in Infertile Men. Reproductive Biology and Endocrinology, 17, 24-32.
https://doi.org/10.1186/s12958-019-0468-9
[24]  Akbarinejad, V., Fathi, R. and Shahverdi, A. (2020) The Relationship of Mitochondrial Membrane Potential, Reactive Oxygen Species, Adenosine Triphosphate Content, Sperm Plasma Membrane Integrity, and Kinematic Properties in Warmblood Stallions. Journal of Equine Veterinary Science, 94, Article ID: 103267.
https://doi.org/10.1016/j.jevs.2020.103267
[25]  Huang, C.Y., Kuo, W.T., Huang, C.Y., Lee, T.C., Chen, C.T., Peng, W.H., et al. (2017) Distinct Cytoprotective Roles of Pyruvate and ATP by Glucose Metabolism on Epithelial Necroptosis and Crypt Proliferation in Ischaemic Gut. The Journal of Physiology, 595, 505-521.
https://doi.org/10.1113/JP272208

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413