Introduction:
Collagen is the primary structural protein fibroblasts produce in the skin’s
extracellular matrix. Infiltration of neutrophils into the epidermis and dermis
by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined
effect of Lumenato and ceramide in preventing collagen-1 damage induced
by phagocytes, we used co-cultures of normal
human dermal fibroblasts (fibroblasts) and activated human neutrophils.
The present study aimed to determine the protective effect of the combination
of Lumenato and ceramide on fibroblast collagen-1 damage induced by
neutrophils. Results: Lumenato (in the range of 6.5-208 μg/ml) or ceramide (in
the range of 0.1-50 μM) inhibited the
production of superoxides and MPO by TNFα-stimulated
neutrophils, as well as the production of NO by LPS-stimulated macrophages in a
dose-dependent manner. The combinations of Lumenato and ceramide, in low
concentrations, caused synergistic prevention
of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils,
detected by fluorescence immunostaining and WB analysis. MPO activity in
the supernatants of the co-cultures was also synergistically inhibited. Adding
Lumenato or ceramide singly or in combinations in these low concentrations to
the fibroblast cultures did not affect the expression of collagen-1. The combinations
of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic
protection against fibroblasts’ collagen-1 damage induced by
neutrophils, thus indicating their possible potential for enhanced skin health.
References
[1]
Quan, T. and Fisher, G.J. (2015) Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology, 61, 427-434. https://pubmed.ncbi.nlm.nih.gov/25660807/
https://doi.org/10.1159/000371708
[2]
Rhie, G., Shin, M.H., Seo, J.Y., Choi, W.W., Cho, K.H., Kim, K.H., Park, K.C., Eun, H.C. and Chung, J.H. (2001) Aging- and Photoaging-Dependent Changes of Enzymic and Nonenzymic Antioxidants in the Epidermis and Dermis of Human Skin in Vivo. Journal of Investigative Dermatology, 117, 1212-1217.
https://pubmed.ncbi.nlm.nih.gov/11710935/
https://doi.org/10.1046/j.0022-202x.2001.01469.x
[3]
Smith, L.T., Holbrook, K.A. and Madri, J.A. (1986) Collagen Types I, III, and V in Human Embryonic and Fetal Skin. American Journal of Anatomy, 175, 507-521.
http://www.ncbi.nlm.nih.gov/pubmed/3521252
https://doi.org/10.1002/aja.1001750409
[4]
Kim, H.H., Cho, S., Lee, S., Kim, K.H., Cho, K.H., Eun, H.C. and Chung, J.H. (2006) Photoprotective and Anti-Skin-Aging Effects of Eicosapentaenoic Acid in Human Skin in Vivo. Journal of Lipid Research, 47, 921-930.
http://www.ncbi.nlm.nih.gov/pubmed/16467281
https://doi.org/10.1194/jlr.M500420-JLR200
[5]
Wlaschek, M., Tantcheva-Poor, I., Naderi, L., Ma, W., Schneider, L.A., Razi-Wolf, Z., Schuller, J. and Scharffetter-Kochanek, K. (2001) Solar UV Irradiation and Dermal Photoaging. Journal of Photochemistry and Photobiology B: Biology, 63, 41-51.
https://doi.org/10.1016/S1011-1344(01)00201-9
[6]
Yan, W., Zhang, L.L., Yan, L., Zhang, F., Yin, N.B., Lin, H.B., Huang, C.Y., Wang, L., Yu, J., Wang, D.M. and Zhao, Z.M. (2013) Transcriptome Analysis of Skin Photoaging in Chinese Females Reveals the Involvement of Skin Homeostasis and Metabolic Changes. PLOS ONE, 8, e61946.
http://www.ncbi.nlm.nih.gov/pubmed/23637934
https://doi.org/10.1371/journal.pone.0061946
[7]
Wood, L.C., Elias, P.M., Calhoun, C., Tsai, J.C., Grunfeld, C. and Feingold, K.R. (1996) Barrier Disruption Stimulates Interleukin-1 α Expression and Release from a Pre-Formed Pool in Murine Epidermis. The Journal of Investigative Dermatology, 106, 397-403. http://www.ncbi.nlm.nih.gov/pubmed/8648167
https://doi.org/10.1111/1523-1747.ep12343392
[8]
Kawaguchi, Y., Tanaka, H., Okada, T., Konishi, H., Takahashi, M., Ito, M. and Asai, J. (1996) The Effects of Ultraviolet A and Reactive Oxygen Species on the mRNA Expression of 72-kDa Type IV Collagenase and Its Tissue Inhibitor in Cultured Human Dermal Fibroblasts. Archives of Dermatological Research, 288, 39-44.
http://www.ncbi.nlm.nih.gov/pubmed/8750933
https://doi.org/10.1007/BF02505041
[9]
Gonzalez, S. and Pathak, M.A. (1996) Inhibition of Ultraviolet-Induced Formation of Reactive Oxygen Species, Lipid Peroxidation, Erythema and Skin Photosensitization by Polypodium Leucotomos. Photodermatology, Photoimmunology & Photomedicine, 12, 45-56. http://www.ncbi.nlm.nih.gov/pubmed/8897589
https://doi.org/10.1111/j.1600-0781.1996.tb00175.x
[10]
Hruza, L.L. and Pentland, A.P. (1993) Mechanisms of UV-Induced Inflammation. Journal of Investigative Dermatology, 100, 35S-41S.
http://www.ncbi.nlm.nih.gov/pubmed/8423392
https://doi.org/10.1111/1523-1747.ep12355240
[11]
Bielenberg, D.R., Bucana, C.D., Sanchez, R., Donawho, C.K., Kripke, M.L. and Fidler, I.J. (1998) Molecular Regulation of UVB-Induced Cutaneous Angiogenesis. Journal of Investigative Dermatology, 111, 864-872.
http://www.ncbi.nlm.nih.gov/pubmed/9804351
https://doi.org/10.1046/j.1523-1747.1998.00378.x
[12]
Rijken, F. and Bruijnzeel, P.L. (2009) The Pathogenesis of Photoaging: The Role of Neutrophils and Neutrophil-Derived Enzymes. Journal of Investigative Dermatology Symposium Proceedings, 14, 67-72. https://pubmed.ncbi.nlm.nih.gov/19675558/
https://doi.org/10.1038/jidsymp.2009.15
[13]
Rijken, F. and Bruijnzeel-Koomen, C.A. (2011) Photoaged Skin: The Role of Neutrophils, Preventive Measures, and Potential Pharmacological Targets. Clinical Pharmacology & Therapeutics, 89, 120-124. https://pubmed.ncbi.nlm.nih.gov/21107312/
https://doi.org/10.1038/clpt.2010.221
[14]
Rijken, F., Kiekens, R.C. and Bruijnzeel, P.L. (2005) Skin-Infiltrating Neutrophils following Exposure to Solar-Simulated Radiation Could Play an Important Role in Photoageing of Human Skin. British Journal of Dermatology, 152, 321-328.
http://www.ncbi.nlm.nih.gov/pubmed/15727646
https://doi.org/10.1111/j.1365-2133.2004.06335.x
[15]
Weiss, S.J. (1989) Tissue Destruction by Neutrophils. The New England Journal of Medicine, 320, 365-376.
https://www.nejm.org/doi/full/10.1056/NEJM198902093200606
https://doi.org/10.1056/NEJM198902093200606
[16]
Monboisse, J.C. and Borel, J.P. (1992) Oxidative Damage to Collagen. In: Emerit, I. and Chance, B., Eds., Free Radicals and Aging, Birkhäuser Basel, Basel, 323-327.
https://pubmed.ncbi.nlm.nih.gov/1333311/
https://doi.org/10.1007/978-3-0348-7460-1_32
[17]
Solomonov, Y., Hadad, N., Pikovsky, O. and Levy, R. (2021) Lumenato Protects Normal Human Dermal Fibroblasts from Neutrophil-Induced Collagen-3 Damage in Co-Cultures. PLOS ONE, 16, e0248183.
http://www.ncbi.nlm.nih.gov/pubmed/33730073
https://doi.org/10.1371/journal.pone.0248183
[18]
Hadad, N. and Levy, R. (2012) The Synergistic Anti-Inflammatory Effects of Lycopene, Lutein, β-Carotene, and Carnosic Acid Combinations via Redox-Based Inhibition of NF-κB Signaling. Free Radical Biology and Medicine, 53, 1381-1391.
https://pubmed.ncbi.nlm.nih.gov/22889596/
https://doi.org/10.1016/j.freeradbiomed.2012.07.078
[19]
Levy, R., Malech, H.L. and Rotrosen, D. (1990) Production of Myeloid Cell Cytosols Functionally and Immunochemically Deficient in the 47 kDa or 67 kDa NADPH Oxidase Cytosolic Factors. Biochemical and Biophysical Research Communications, 170, 1114-1120. https://pubmed.ncbi.nlm.nih.gov/2167670/
https://doi.org/10.1016/0006-291X(90)90508-K
[20]
Solomonov, Y., Hadad, N. and Levy, R. (2018) The Combined Anti-Inflammatory Effect of Astaxanthin, Lyc-O-Mato and Carnosic Acid in Vitro and in Vivo in a Mouse Model of Peritonitis. Journal of Nutrition & Food Sciences, 8, Article ID: 1000653. https://doi.org/10.4172/2155-9600.1000653
https://doi.org/10.4172/2155-9600.1000653
[21]
Bashir, M.M., Sharma, M.R. and Werth, V.P. (2009) TNF-α Production in the Skin. Archives of Dermatological Research, 301, 87-91.
http://www.ncbi.nlm.nih.gov/pubmed/18825399
https://doi.org/10.1007/s00403-008-0893-7
[22]
Gaggini, M., Pingitore, A. and Vassalle, C. (2021) Plasma Ceramides Pathophysiology, Measurements, Challenges, and Opportunities. Metabolites, 11, Article 719.
http://www.ncbi.nlm.nih.gov/pubmed/34822377
https://doi.org/10.3390/metabo11110719
[23]
Nakamura, T., Abe, A., Balazovich, K.J., Wu, D., Suchard, S.J., Boxer, L.A. and Shayman, J.A. (1994) Ceramide Regulates Oxidant Release in Adherent Human Neutrophils. The Journal of Biological Chemistry, 269, 18384-18389.
http://www.ncbi.nlm.nih.gov/pubmed/8034585
https://doi.org/10.1016/S0021-9258(17)32319-0
[24]
Wong, K., Li, X.B. and Hunchuk, N. (1995) N-Acetylsphingosine (C2--Ceramide) Inhibited Neutrophil Superoxide Formation and Calcium Influx. Journal of Biological Chemistry, 270, 3056-3062. http://www.ncbi.nlm.nih.gov/pubmed/7852386
https://doi.org/10.1074/jbc.270.7.3056
[25]
Harty, M.W., Muratore, C.S., Papa, E.F., Gart, M.S., Ramm, G.A., Gregory, S.H. and Tracy Jr., T.F. (2010) Neutrophil Depletion Blocks Early Collagen Degradation in Repairing Cholestatic Rat Livers. The American Journal of Pathology, 176, 1271-1281. http://www.ncbi.nlm.nih.gov/pubmed/20110408
https://doi.org/10.2353/ajpath.2010.090527
[26]
Li, Q., Fukuda, K., Lu, Y., Nakamura, Y., Chikama, T., Kumagai, N. and Nishida, T. (2003) Enhancement by Neutrophils of Collagen Degradation by Corneal Fibroblasts. Journal of Leukocyte Biology, 74, 412-419.
http://www.ncbi.nlm.nih.gov/pubmed/12949245
https://doi.org/10.1189/jlb.0801757
[27]
Chowdhury, S.R., Mh Busra, M.F., Lokanathan, Y., Ng, M.H., Law, J.X., Cletus, U.C. and Binti Haji Idrus, R. (2018) Collagen Type I: A Versatile Biomaterial. Advances in Experimental Medicine and Biology, 1077, 389-414.
http://www.ncbi.nlm.nih.gov/pubmed/30357700
https://doi.org/10.1007/978-981-13-0947-2_21
[28]
Talwar, H.S., Griffiths, C.E., Fisher, G.J., Hamilton, T.A. and Voorhees, J.J. (1995) Reduced Type I and Type III Procollagens in Photodamaged Adult Human Skin. Journal of Investigative Dermatology, 105, 285-290.
http://www.ncbi.nlm.nih.gov/pubmed/7543550
https://doi.org/10.1111/1523-1747.ep12318471
[29]
Nakabo, Y. and Pabst, M.J. (1997) C2-Ceramide and C6-Ceramide Inhibited Priming for Enhanced Release of Superoxide in Monocytes, But Had No Effect on the Killing of Leukaemic Cells by Monocytes. Immunology, 90, 477-482.
http://www.ncbi.nlm.nih.gov/pubmed/9176098
https://doi.org/10.1046/j.1365-2567.1997.d01-2189.x
[30]
Sethi, G. and Sodhi, A. (2004) In Vitro Activation of Murine Peritoneal Macrophages by Ultraviolet B Radiation: Upregulation of CD18, Production of NO, Proinflammatory Cytokines and a Signal Transduction Pathway. Molecular Immunology, 40, 1315-1323. http://www.ncbi.nlm.nih.gov/pubmed/15072850
https://doi.org/10.1016/j.molimm.2004.01.001
[31]
Philips, N., Tuason, M., Chang, T., Lin, Y., Tahir, M. and Rodriguez, S.G. (2009) Differential Effects of Ceramide on Cell Viability and Extracellular Matrix Remodeling in Keratinocytes and Fibroblasts. Skin Pharmacology and Physiology, 22, 151-157. http://www.ncbi.nlm.nih.gov/pubmed/19276645
https://doi.org/10.1159/000208168
[32]
Coderch, L., Lopez, O., De La Maza, A. and Parra, J.L. (2003) Ceramides and Skin Function. American Journal of Clinical Dermatology, 4, 107-129.
http://www.ncbi.nlm.nih.gov/pubmed/12553851
https://doi.org/10.2165/00128071-200304020-00004
[33]
Andrieu-Abadie, N., Gouaze, V., Salvayre, R. and Levade, T. (2001) Ceramide in Apoptosis Signaling: Relationship with Oxidative Stress. Free Radical Biology and Medicine, 31, 717-728. http://www.ncbi.nlm.nih.gov/pubmed/11557309
https://doi.org/10.1016/S0891-5849(01)00655-4
[34]
Geilen, C.C., Wieder, T. and Orfanos, C.E. (1997) Ceramide Signalling: Regulatory role in Cell Proliferation, Differentiation and Apoptosis in Human Epidermis. Archives of Dermatological Research, 289, 559-566.
http://www.ncbi.nlm.nih.gov/pubmed/9373714
https://doi.org/10.1007/s004030050240
[35]
Hannun, Y.A. (1994) The Sphingomyelin Cycle and the Second Messenger Function of Ceramide. Journal of Biological Chemistry, 269, 3125-3128.
http://www.ncbi.nlm.nih.gov/pubmed/8106344
https://doi.org/10.1016/S0021-9258(17)41834-5
[36]
Hannun, Y.A. and Obeid, L.M. (2008) Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139-150.
http://www.ncbi.nlm.nih.gov/pubmed/18216770
https://doi.org/10.1038/nrm2329
[37]
Obeid, L.M. and Hannun, Y.A. (1995) Ceramide: A Stress Signal and Mediator of Growth Suppression and Apoptosis. Journal of Cellular Biochemistry, 58, 191-198.
http://www.ncbi.nlm.nih.gov/pubmed/7673327
https://doi.org/10.1002/jcb.240580208
[38]
Okazaki, T., Bielawska, A., Bell, R.M. and Hannun, Y.A. (1990) Role of Ceramide as a Lipid Mediator of 1 α, 25-Dihydroxyvitamin D3-Induced HL-60 Cell Differentiation. Journal of Biological Chemistry, 265, 15823-15831.
http://www.ncbi.nlm.nih.gov/pubmed/2394750
https://doi.org/10.1016/S0021-9258(18)55472-7
[39]
Zerbinati, N., Sommatis, S., Maccario, C., Di Francesco, S., Capillo, M.C., Grimaldi, G., Rauso, R., Herrera, M., Bencini, P.L. and Mocchi, R. (2021) A Practical Approach for the in Vitro Safety and Efficacy Assessment of an Anti-Ageing Cosmetic Cream Enriched with Functional Compounds. Molecules, 26, Article 7592.
http://www.ncbi.nlm.nih.gov/pubmed/34946675
https://doi.org/10.3390/molecules26247592
[40]
Britton, G. (1995) Structure and Properties of Carotenoids in Relation to Function. The FASEB Journal, 9, 1551-1558. https://pubmed.ncbi.nlm.nih.gov/8529834/
https://doi.org/10.1096/fasebj.9.15.8529834
[41]
Gabrielska, J. and Gruszecki, W.I. (1996) Zeaxanthin (Dihydroxy-β-Carotene) But Not β-Carotene Rigidifies lipiD Membranes: A 1H-NMR Study of Carotenoid-Egg Phosphatidylcholine Liposomes. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1285, 167-174. http://www.ncbi.nlm.nih.gov/pubmed/8972700
https://doi.org/10.1016/S0005-2736(96)00152-6
[42]
Singh, S., Banerjee, O., Bhattacharjee, A., Prasad, S.K., Bose, A., Maji, B.K. and Mukherjee, S. (2020) Effect of Individual and Combined Supplementation of Phytoene, Phytofluene, and Lycopene against Nicotine-Induced Pancreatic Islet celL Dysfunction. Toxicology and Environmental Health Sciences, 12, 11-22.
https://doi.org/10.1007/s13530-020-00035-9