全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization of the Pretreatment of the Mixture of Cassava Peelings and Pineapple Fibers Using Response Surface Methodology and a Process Simulator for the Bioethanol Production

DOI: 10.4236/epe.2024.162004, PP. 79-96

Keywords: Bioethanol, Cassava Peeling, Pineapple Fibers, Organosolv Process and Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min-1, 5358.1461 J·mol-1, 1383.03691 min-1, 51577.6100 J·mol-1 respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.

References

[1]  Mesa, L., González, E., Cara, C., González, M., Castro, E. and Mussatto, S.I. (2011) The Effect of Organosolv Pretreatment Variables on Enzymatic Hydrolysis of Sugarcane Bagasse. Chemical Engineering Journal, 168, 1157-1162.
https://doi.org/10.1016/j.cej.2011.02.003
[2]  Kamkuimo, P., Ayouba, S. and Mbarga, A. (2018) étude sur la situation de référence de valorisation des rebuts de l’exploitation forestière et de scierie dans la région de l’Est-Cameroun.
[3]  Sharma, P., Kumar, U.G. and Amiya, K.R. (2016) Dynamic Model for Anaerobic Digestion of Sewage Sludge Considering Haldane Kinetics and Wall Growth Factor. American Journal of Environmental Engineering, 6, 129-139.
[4]  Samomssa, I., Nono, Y.J., Tsamo, C., Dinica, M.R. and Kamga, R. (2019) Influence of Physico-Chemical Parameters on Fuel Briquettes Properties Formulated Withmixture of Biomasses. Journal of Environmental Science and Pollution Research, 5, 338-341.
https://doi.org/10.30799/jespr.165.19050202
[5]  WEO (World Energy Outlook) (2019) Rapport de l’Agence Internationale de l’énergie (AIE) 2019.
https://www.iea.org/reports/world-energy-outlook-2019
[6]  Nanssou, P.A.K., Nono, Y.J. and Kapseu, C. (2016) Pretreatment of Cassava Stems and Peelings by Thermohydrolysis to Enhance Hydrolysis Yield of Cellulose in Bioethanol Production Process. Renewable Energy, 97, 252-265.
https://doi.org/10.1016/j.renene.2016.05.050
[7]  Tchuidjang, T.T., Noubissié, E. and Ali, A. (2021) Optimization of the Pre-Treatment of White Sawdust (Triplochiton scleroxylon) by the Organosolv Process for the Production of Bioethanol. Oil & Gas Science and Technology, 76, Article No. 23.
https://doi.org/10.2516/ogst/2021004
[8]  Stevens, C., et al. (2013) Aqueous Pretreatment for Plant Biomass for Biological and Chemical Conversions to Fuels and Chemicals. John Wiley and Sons, New York.
[9]  Wertz, J.L. and Bédué, O. (2013) Lignocellulosic Biorefineries. EPLF Press, New York.
https://doi.org/10.1201/b15443
[10]  Mussato, S.I. (2016) Biomass Fractionation Technologies for Lignocellulosic Feedstock Based Biorefinery. Elsevier, Amsterdam.
[11]  Waldron, K. (2010) Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass. Woodhead Publishing, Cambridge.
[12]  Moulijn, J., Makkee, M. and Van Diepen, A. (2013) Chemical Process Technology. Wiley, New York.
[13]  Adabe, K.E. and Ngo-Samnick, E.L. (2014) Cocoa Production and Processing. Agricultural and Food Sciences, Douala.
[14]  Aregheore, E.M. (2002) Chemical Evaluation and Digestibility of Cocoa (Theobroma cacao) by-Products Fed to Goats. Tropical Animal Health and Production, 34, 339-348.
https://doi.org/10.1023/A:1015638903740
[15]  Cateto, C.A., Filomena Barreiro, M., Egídio Rodrigues, A. and Naceur Belgacem, M. (2011) Kinetic Study of the Formation of Lignin-Based Polyurethanes in Bulk. Reactive and Functional Polymers, 71, 863-869.
https://doi.org/10.1016/j.reactfunctpolym.2011.05.007
[16]  Dien, B.S., Jung, H.J.G., Vogel, K.P., Casler, M.D., Lamb, J.F. and Iten, L. (2006) Chemical Composition and Response to Dilute-Acid Pretreatment and Enzymatic Saccharification of Alfalfa, Reed Canarygrass, and Switchgrass. Biomass and Bioenergy, 30, 880-891.
https://doi.org/10.1016/j.biombioe.2006.02.004
[17]  Kabir, M.M., Rajendran, K., Taherzade, M.J. and Horváth, I.S. (2014) Experimental and Economical Evaluation of Bioconversion of Forest Residues to Biogas Using Organosolv Pre-treatment. Bioresource Technology, 178, 201-208.
https://doi.org/10.1016/j.biortech.2014.07.064
[18]  Blaise, K.Y. (2013) Optimization of Sugars in Cocoa Shells (Théobroma cacao) in Order to Produce Bioethanol. Master’s Thesis, University of Ngaoundéré, Ngaoundéré.
[19]  Kim, D. and Pan, X. (2010) Preliminary Study on Converting Hybrid Poplar to High-Value Chemicals and Lignin Using Organosolv Ethanol Process. Industrial & Engineering Chemistry Research, 49, 12156-12163.
https://doi.org/10.1021/ie101671r
[20]  Kupiainen, L., Ahola, J. and Tanskanen, J. (2014) Kinetics of Formic Acid-Catalyzed Cellulose Hydrolysis. BioRes, 9, 2645-2658.
[21]  Mosier, N., Wyman, C., et al. (2004) Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Elsevier, Amsterdam.
[22]  Carrasco, R.C. and Oncina, J. (1994) Learning Stochastic Regular Grammars by Means of a State Merging Method. In: Carrasco, R.C. and Oncina, J., Eds., ICGI 1994: Grammatical Inference and Applications, Springer, Berlin, 139-152.
https://doi.org/10.1007/3-540-58473-0_144
[23]  Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G. and Schols, H.A. (2007) Effect of Pretreatment Severity on Xylan Solubility and Enzymatic Breakdown of the Remaining Cellulose from Wheat Straw. Bioresource Technology, 98, 2034-2042.
https://doi.org/10.1016/j.biortech.2006.08.006
[24]  Ashraf Hussain, M., Emdadul Huq, M., Rahman, S.M. and Ahmed, Z. (2002) Estimation of Lignin in Jute by Titration Method. Pakistan Journal of Biological Sciences, 5, 521-522.
https://doi.org/10.3923/pjbs.2002.521.522
[25]  N’Diaye, S., Rigal, L., Larocque, P. and Vidal, P.F. (1996) Extraction of Hemicelluloses from Poplar, Populus tremuloides, Using an Extruder-Type Twin-Screw Reactor: A Feasibility Study. Bioresource Technology, 57, 61-67.
https://doi.org/10.1016/0960-8524(96)00041-7
[26]  Joglekar, A.M. and May, A.T. (1987) Product Excellence through Design of Experiments. Cereal Foods World, 32, 857-868.
[27]  Bas, D. and Boyac, I.H. (2007) Modeling and Optimization I. Journal of Food Engineering, 78, 836-845.
https://doi.org/10.1016/j.jfoodeng.2005.11.024
[28]  Godin, B., Ghysel, F., Agneessens, R., Schmit, T., Gofflot, S., Lamaudière, S. and Delcarte, J. (2010) Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dédiées à la production de bioéthanol de deuxième generation [Cellulose, Hemicelluloses, Lignin, and Ash Contents in Various Lignocellulosic Crops for Second Generation Bioethanol Production]. Biotechnologie, Agronomie, Société et Environnement, 14, 549.
https://popups.uliege.be/1780-4507/index.php?id=6186
[29]  Tijskens, L.M., Hertog, M.L. and Nicolai, B.M. (2001) Food Process Modelling. CRC Press, Boca Raton.
https://doi.org/10.1201/9781439823064
[30]  Park, N., Kim, Y.H., Koo, B.W., Yeo, H and Choi, I.G. (2010) Organosolv Pretreatment with Various Catalysts for Enhancing Enzymatic Hydrolysis of Pitch Pine (Pinus rigida). Bioresource Technology, 101, 7046-7053.
https://doi.org/10.1016/j.biortech.2010.04.020
[31]  Hashimoto, S., Shogren, M.D. and Pomeranz, Y. (1987) Cereal Pentosans: Their Estimation and Significance. I. Pentosans in Wheat and Milled Wheat Products. Cereal Chemistry, 64, 30-34.
[32]  Akpinar, O., Serdal, S., Okan, L. and Abdulvahit, S. (2012) Evaluation of Antioxidant Activity of Dilute Acid Hydrolysate of Wheat Straw during Xylose Production. Industrial Crops and Products, 40, 39-44.
https://doi.org/10.1016/j.indcrop.2012.02.035
[33]  Kanchanalai, P., Temani, G., Kawajiri, Y. and Realff, M.J. (2016) Reaction Kinetics of Concentrated-Acid Hydrolysis for Cellulose and Hemicellulose and Effect of Crystallinity. BioRe-sources, 11, 1672-1689.
https://doi.org/10.15376/biores.11.1.1672-1689
https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes
[34]  Fisher, E.H. and Stein, E.A. (1961) DNS Colorimetric Determination of Available Carbohydrates in Foods. Bio-chemical Preparation, 8, 30-37.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413