全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inferring Eupolypods Divergence Time Using Bayesian Tip-Dating

DOI: 10.4236/ojg.2024.142013, PP. 247-258

Keywords: Eupolypods, Mid-Cretaceous, Fossils, Bayesian Tip-Dating

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the most recent Pteridophyte Phylogeny Group (PPG), eupolypods, or eupolypod ferns, are the most differentiated and diversified of all major lineages of ferns, accounting for more than half of extant fern diversity. However, the evolutionary history of eupolypods remains incompletely understood, and conflicting ideas and scenarios exist in the literature about many aspects of this history. Due to a scarce fossil record, the diversification time of eupolypods mainly inferred from molecular dating approaches. Currently, there are two molecular dating results: the diversification of eupolypods occurred either in the Late Cretaceous or as early as in the Jurassic. This study uses the Bayesian tip-dating approach for the first time to infer the diversification time for eupolypods. Our analyses support the Jurassic diversification for eupolypods. The age estimations for the diversifications of the whole clade and one of its two subclades (the eupolypods II) are both in the Jurassic, which adds to the growing body of data on a much earlier diversification of Polypodiales in the Mesozoic than previously suspected.

References

[1]  PPG I (2016) A Community-Derived Classification for Extant Lycophytes and Ferns. Journal of Systematics and Evolution, 54, 563-603.
https://doi.org/10.1111/jse.12229
[2]  Pryer, K.M., Schuettpelz, E., Wolf, P.G., Schneider, H., Smith, A.R. and Cranfill, R. (2004) Phylogeny and Evolution of Ferns (Monilophytes) with a Focus on the Early Leptosporangiate Divergences. American Journal of Botany, 91, 1582-1598.
https://doi.org/10.3732/ajb.91.10.1582
[3]  Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S. and Lupia, R. (2004) Ferns Diversified in the Shadow of Angiosperms. Nature, 428, 553-557.
https://doi.org/10.1038/nature02361
[4]  Schuettpelz, E. and Pryer, K.M. (2009) Evidence for a Cenozoic Radiation of Ferns in an Angiosperm-Dominated Canopy. Proceedings of the National Academy of Sciences, USA, 106, 11200-11205.
https://doi.org/10.1073/pnas.0811136106
[5]  Rothfels, C.J., Li, F.W., Sigel, E.M., Huiet, L., Larsson, A., Burge, D.O., Ruhsam, M., Deyholos, M., Soltis, D.E., Stewart, C.N., et al. (2015) The Evolutionary History of Ferns Inferred from 25 Low-Copy Nuclear Genes. American Journal of Botany, 102, 1089-1107.
https://doi.org/10.3732/ajb.1500089
[6]  Qi, X.P., Kuo, L.Y., Guo, C., Li, H., Li, Z., Qi, J., Wang, L., Hu, Y., Xiang, J., Zhang, C.F., Guo, J., Huang, C.H. and Ma, H. (2018) A Well-Resolved Fern Nuclear Phylogeny Reveals the Evolution History of Numerous Transcription Factor Families. Molecular Biology and Evolution, 127, 961-977.
https://doi.org/10.1016/j.ympev.2018.06.043
[7]  Testo, W. and Sundue, M. (2016) A 4000-Species Dataset Provides New Insight into the Evolution of Ferns. Molecular Biology and Evolution, 105, 200-211.
https://doi.org/10.1016/j.ympev.2016.09.003
[8]  Regalado, L., Schmidt, A.R., Krings, M., Bechteler, J., Schneider, H. and Heinrichs, J. (2018) Fossil Evidence of Eupolypod Ferns in the Mid-Cretaceous of Myanmar. Plant Systematics and Evolution, 304, 1-13.
https://doi.org/10.1007/s00606-017-1439-2
[9]  Du, X.Y., Lu, J.M., Zhang, L.B., Wen, J., Kuo, L.Y., Mynssen, C.M., Schneider, H. and Li, D.Z. (2021) Simultaneous Diversification of Polypodiales and Angiosperms in the Mesozoic. Cladistics, 37, 518-539.
https://doi.org/10.1111/cla.12457
[10]  Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D.L. and Rasnitsyn, A.P. (2012) A Total-Evidence Approach to Dating, Applied to the Early Radiation of Hymenoptera. Systematic Biology, 61, 973-999.
https://doi.org/10.1093/sysbio/sys058
[11]  Ronquist, F., Teslenko, M., Mark, P., van der Ayres, D., Darling, A., Höhna, S., Larget, B.L., Liu, M.A., Suchard and Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 539-542.
https://doi.org/10.1093/sysbio/sys029
[12]  Zhang, C., Stadler, T., Klopfstein, S., Heath, T.A. and Ronquist, F. (2016) Total-Evidence Dating under the Fossilized Birth-Death Process. Systematic Biology, 65, 228-249.
https://doi.org/10.1093/sysbio/syv080
[13]  May, M.R., Contreras, D.L., Sundue, M.A., Nagalingum, N.S., Looy, C.V. and Rothfels, C.J. (2021) Inferring the Total-Evidence Timescale of Marattialean Fern Evolution in the Face of Model Sensitivity. Systematic Biology, 70, 1232-1255.
https://doi.org/10.1093/sysbio/syab020
[14]  Wang, Q.X. (2001) Study on the Spore Morphology of Polypodiales (Filieales) from China. PhD Dissertation, Northeast Forestry University, Harbin, 291 p.
[15]  Xie, W., Lewis, P.O., Fan, Y., Kuo, L. and Chen, M.H. (2011) Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection. Systematic Biology, 60, 150-160.
https://doi.org/10.1093/sysbio/syq085
[16]  Zhang, C. (2021) Using Bayesian Tip-Dating Method to Estimate Divergence Times and Evolutionary Rates. Vertebrata Palasiatica, 4, 333-341. (In Chinese)
[17]  Rambaut, A. (2012) FigTree, Version 1.4.
http://tree.bio.ed.ac.uk/software/figtree
[18]  Chen, F., Deng, S.H. and Sun, K.Q. (1997) Early Cretaceous Athyrium Roth from Northeastern China. Palaeobotanist, 46, 117-133.
https://doi.org/10.54991/jop.1997.1356
[19]  Deng, S.H. and Chen, F. (2001) The Early Cretaceous Filicopsida from Northeast China. Geological Publishing House, Beijing, 374 p.
[20]  Li, C.X., Ma, J.Y., Hao, J.S. and Yang, Q. (2023) On the Systematic Position of Early Cretaceous Fern Genus “Athyrium”. Palaeoworld, 32, 116-123.
https://doi.org/10.1016/j.palwor.2022.07.003
[21]  Conran, J.G., Kaulfuss, U., Bannister, J.M., Mildenhall, D.C. and Lee, D.E. (2010) Davallia (Polypodiales: Davalliaceae) Macrofossils from Early Miocene Otago (New Zealand) with in Situ Spores. Review of Palaeobotany and Palynology, 162, 84-94.
https://doi.org/10.1016/j.revpalbo.2010.06.001
[22]  Wu, J.Y., Sun, B.N., Xie, S.P., Ding, S.T. and Wen, W.W. (2012) Dimorphic Fronds and in Situ Spores of Drynaria (Polypodiaceae) from the Upper Pliocene of Southwest China. Review of Palaeobotany and Palynology, 172, 1-9.
https://doi.org/10.1016/j.revpalbo.2012.01.007
[23]  Pigg, K.B. and Rothwell, G.W. (2001) Anatomically Preserved Woodwardia virginica (Blechnaceae) and a New Filicalean Fern from the Middle Miocene Yakima Canyon Flora of Central Washington, USA. American Journal of Botany, 88, 777-785.
https://doi.org/10.2307/2657030
[24]  Rothwell, G.W. and Stockey, R.A. (1991) Onoclea sensibilis in the Paleocene of North America, a Dramatic Example of Structural and Ecological Stasis. Review of Palaeobotany and Palynology, 70, 113-124.
https://doi.org/10.1016/0034-6667(91)90081-D
[25]  Vikulin, S.V. and Bobrov, A.E. (1987) A New Fossil Genus Protodrynaria (Polypodiaceae) from the Paleogene Flora of Tim (the South of the Middle Russian Upland). Botanicheskii Zhurnal, 72, 95-98. (In Russian)
[26]  Homes, A.M., Cieraad, E., Lee, D.E., Lindqvist, J.K., Raine, J.I., Kennedy, E.M. and Conran, J.G. (2015) A Diverse Fern Flora Including Macrofossils with in Situ Spores from the Late Eocene of Southern New Zealand. Review of Palaeobotany and Palynology, 220, 16-28.
https://doi.org/10.1016/j.revpalbo.2015.04.007
[27]  Song, H.Z., Naugolnykh, S.V., Wu, X.K., Liu, X.Y. and Jin, J.H. (2022) Fertile Woodwardia from the Middle Eocene of South China and Its Implications for Palaeogeography and Palaeoclimate. Plant Diversity, 44, 565-576.
https://doi.org/10.1016/j.pld.2021.09.003
[28]  Poinar, G.O. and Buckley, R. (2008) Cretacifilix fungiformis gen. and sp. nov., an Eupolypod Fern (Polypodiales) in Early Cretaceous Burmese Amber. Journal of the Botanical Research Institute of Texas, 2, 1175-1182.
[29]  Regalado, L., Schneider, H., Mülle, P. and Schmidt, A.R. (2023) Character Evolution of Modern Eupolypods Supports the Assignment of the Fossil Fern Cretacifilix fungiformis to Dryopteridaceae. Frontiers in Ecology and Evolution, 11, Article ID: 1162577.
https://doi.org/10.3389/fevo.2023.1162577
[30]  Li, C. and Zhang, L. (2019) Diversification of Eupolypods in Mid-Cretaceous— Evidenced by Myanmar Amber Forest. Open Journal of Geology, 9, 726-730.
https://doi.org/10.4236/ojg.2019.910086
[31]  Dalmassoa, A., Peláez-Campomanesb, P. and López-Antoñanzas R. (2022) Relative Performance of Bayesian Morphological Clock and Parsimony Methods for Phylogenetic Reconstructions: Insights from the Case of Myomiminae and Dryomyinae Glirid Rodents. Cladistics, 38, 702-710.
https://doi.org/10.1111/cla.12516

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413