全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

频率域属性含气性检测技术研究及应用
A Study and Application of Gas Potential Detection Technology Based on Frequency Attributes

DOI: 10.12677/AG.2024.142014, PP. 143-156

Keywords: 频率域属性,衰减梯度,频变AVO,频变地震反射系数,低频伴影
Frequency Attributes
, Attenuation Gradient, Frequency-Variant AVO, Frequency-Variant Seismic Reflection Coefficient, Low-Frequency Shadows

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震波散射能量的研究表明:如果岩石中含有油气,将会导致地震波的速度频散或者传播能量的衰减,这些不规则的衰减或频散对烃类指示非常有用。除了孔隙介质速度频散和衰减,还伴生了两种现象:反射系数变化和低频伴影,利用这两种现象进行含气性检测为近年来的新方法。介绍了四种频率域含气性检测方法,并在不同地区及层系开展了方法应用,结果显示各方法的预测结果与已钻井或沉积相带吻合较好。
The research of seismic wave scattering energy shows that: If the rock contains oil and gas, this will lead to the velocity dispersion or energy attenuation of seismic wave propagating in the rock. The irregular attenuation or velocity dispersion is very useful for hydrocarbon indicators. In addition to the velocity dispersion and attenuation of the porous media, two phenomena are also associated: the change of reflection coefficient and low-frequency shadows, and using these two phenomena to detect gas content is a new method in recent years. Four kinds of frequency-domain gas detection methods are introduced, and they are well applied in different blocks and layers. The results show that the prediction results of each method are in good agreement with the drilling or sedimentary facies.

References

[1]  李振春, 王清振. 地震波衰减机理及能量补偿研究综述[J]. 地球物理学进展, 2007, 22(4): 1147-1152.
[2]  黄中玉, 王于静, 苏永昌. 一种新的地震波衰减分析方法——预测油气异常的有效工具[J]. 石油地球物理勘探, 2000, 35(6): 768-773.
[3]  Vare, C.L., 戴铭藻. 衰减与频散模拟[J]. 勘探地球物理进展, 1994(3): 29-36.
[4]  吴如山, 安艺敬一. 地震波的散射与衰减[M]. 北京: 地震出版社, 1993: 7-30.
[5]  张舜, 周怀来, 王元君, 等. 基于时频域的变分模态分解油气检测技术及应用[J]. 物探化探计算技术, 2021, 43(4): 435-443.
[6]  刘鹏奇. 基于地震波频散特征的天然气水合物识别方法研究[D]: [博士学位论文]. 北京: 中国石油大学(北京), 2022.
[7]  李雪梅. 基于双相介质的流体识别方法研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2021.
[8]  贺东宣, 李勇, 牛聪, 等. 低频伴影特征频率确定方法及其在南海深水区的应用[J]. 地球物理学进展, 2023, 1-13.
[9]  张景业, 贺振华, 黄德济. 地震波频率衰减梯度在油气预测中的应用[J]. 勘探地球物理进展, 2010, 33(3): 207-211.
[10]  Bat-zle, M.L. and Wang, Z. (1992) Seismic Properties of Pore Fluids. Geophysics, 57, 1396-1408.
https://doi.org/10.1190/1.1443207
[11]  Chapman, M. (2010) Frequency-Dependent Anisotropy Due to Me-so-Scale Fractures in the Presence of Equant Porosity. Geophysical Prospecting, 51, 369-379.
https://doi.org/10.1046/j.1365-2478.2003.00384.x
[12]  Chapman, M., Liu, E. and Li, X.Y. (2005) The Influence of Abnormally High Reservoir Attenuation on the AVO Signature. The Leading Edge, 24, 1120-1125.
https://doi.org/10.1190/1.2135103
[13]  Chapman, M., Liu, E. and Li, X.Y. (2006) The Influence of Flu-id-Sensitive Dispersion and Attenuation on AVO Analysis. Geophysical Journal International, 167, 89-105.
https://doi.org/10.1111/j.1365-246X.2006.02919.x
[14]  Gassmann, F. (1951) Uber die elastizitat poroser medien. Vierteljarsschrift der Naturforschenden Gesselschaft, 96, 1-23.
[15]  逄硕, 刘财, 郭智奇, 等. 基于频变AVO反演的页岩储层含气性地震识别技术[J]. 地球物理学报, 2018, 61(11): 4613-4624.
[16]  Dvorkin, J. and Nur, A. (1993) Dynamic Poroelasticity: A Unified Model with the Squirt and the Biot Mechanisms. Geophysics, 58, 524-533.
https://doi.org/10.1190/1.1443435
[17]  Biot, M.A. (1955) Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. The Journal of the Acoustical Society of America, 28, 168-178.
https://doi.org/10.1121/1.1908239
[18]  Biot, M.A. (1955) Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, II: Higher Frequency Range. The Journal of the Acoustical Society of America, 28, 179-191.
https://doi.org/10.1121/1.1908241
[19]  Gurevich, B., Ciz, R. and Denneman, A.I.M. (2004) Simple Expressions for Normal Incidence Reflection Coefficients from an Interface between Fluid-Saturated Porous Materials. Geophysics, 69, 1372-1377.
https://doi.org/10.1190/1.1836811
[20]  Barenblatt, G.I., Zheltov, Y.P. and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics, 24, 1286-1303.
https://doi.org/10.1016/0021-8928(60)90107-6
[21]  Pride, S.R. and Berryman, J.G. (2003) Linear Dynamics of Double-Porosity Dual-Permeability Materials. I. Governing Equations and Acoustic Attenuation. Physical Review E, 68, Article ID: 036603.
https://doi.org/10.1103/PhysRevE.68.036603
[22]  Pride, S.R. and Berryman, J.G. (2003) Linear Dynamics of Double-Porosity Dual-Permeability Materials. II. Fluid Transport Equations. Physical Review E, 68, Article ID: 036604.
https://doi.org/10.1103/PhysRevE.68.036604
[23]  Goloshubin, G., Schuyver, C.V., Korneev, V., et al. (2006) Reservoir Imaging Using Low Frequencies of Seismic Reflections. The Leading Edge, 25, 527-531.
https://doi.org/10.1190/1.2202652
[24]  Goloshubin, G., Silin, D., Vingalov, V., et al. (2008) Reservoir Permeability from Seismic Attribute Analysis. Leading Edge, 27, 376-381.
https://doi.org/10.1190/1.2896629
[25]  Goloshubin, G. and Silin, D. (2005) Using Frequency-Dependent Seismic Attributes in Imaging of a Fractured Reservoir Zone. SEG Technical Program Expanded Abstracts, 24, 1742-1746.
https://doi.org/10.1190/1.2147954
[26]  Denneman, A.I.M., Drijkoningen, G.G., Smeulders, D.M.J., et al. (2002) Reflection and Transmission of Waves at a Fluid/Porous-Medium Interface. Geophysics, 67, 282-291.
https://doi.org/10.1190/1.1451800
[27]  Silin, D.B., Korneev, V.A., Goloshubin, G.M., et al. (2006) Low-Frequency Asymptotic Analysis of Seismic Reflection from a Fluid-Saturated Medium. Transport in Porous Media, 62, 283-305.
https://doi.org/10.1007/s11242-005-0881-8
[28]  Silin, D.B. and Goloshubin, G.M. (2010) An Asymptotic Model of Seismic Reflection from a Permeable Layer. Transport in Porous Media, 83, 233-256.
https://doi.org/10.1007/s11242-010-9533-8
[29]  Taner, M.T., Koehler, F. and Sheriff, R.E. (1979) Complex Seismic Trace Analysis. Geophysics, 44, 1041-1063.
https://doi.org/10.1190/1.1440994
[30]  Castagna, J.P., Sun, S.J. and Siegfried, R.W. (2003) Instantaneous Spectral Analysis: Detection of Low-Frequency Shadows Associated with Hydrocarbons. The Leading Edge, 2, 120-127.
https://doi.org/10.1190/1.1559038
[31]  Korneev, V.A., Goloshubin, G.M., Daley, T.M., et al. (2004) Seismic Low-Frequency Effects in Monitoring Fluid-Saturated Reservoirs. Geophysics, 69, 522-532.
https://doi.org/10.1190/1.1707072
[32]  Ebrom, D. (2004) The Low-Frequency Gas Shadow on Seismic Sections. The Leading Edge, 23, 772-772.
https://doi.org/10.1190/1.1786898
[33]  贺振华, 熊晓军, 边立恩. 地震低频伴影的数值模拟与应用[J]. 应用地球物理(英文版), 2008, 5(4): 301-306.
[34]  陈学华, 贺振华, 黄德济. 基于广义S变换的地震资料高效时频谱分解[J]. 石油地球物理勘探, 2008, 43(5): 530-535.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413