全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类p-群的非交换图的谱性质
The Properties of Spectrum of Non-Commuting Graphs of a Class of p-Groups

DOI: 10.12677/PM.2024.142053, PP. 549-556

Keywords: 有限群,非交换图,图的谱,邻接谱,(拟、正规)拉普拉斯谱
Finite Groups
, Non-Commuting Graph, The Spectrum of a Graph, Adjacency Spectrum, (Quasi-, Normal-) Laplace Spectrum

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限非交换群的非交换图是一类简单无向图,它以群的非中心元为顶点,两顶点相邻接当且仅当它们的乘积不可交换。本文研究了p3阶群的非交换图的相关谱性质,包括邻接谱、拉普拉斯谱,拟拉普拉斯谱以及正规拉普拉斯谱等。
Non-commuting graphs of finite non-abelian groups are a class of simple undirected graphs that take the non-central elements of the group as vertices, and two vertices are adjacent if and only if their product is non commutative. This paper investigates the spectral properties of non-commuting graphs of groups of order p3, including adjacency spectra, Laplace spectra, quasi-Laplace spectra, and normal-Laplace spectra.

References

[1]  Lennox, J.C. and Wiegold, J. (1981) Extensions of a Problem of Paul Erd?s on Groups. Journal of the Australian Mathematical Society, 31, 459-463.
https://doi.org/10.1017/S1446788700024253
[2]  Longobardi, P. (2001) On Locally Graded Groups with an Engel Condition on Infinite Subsets. Archiv der Mathematik, 76, 88-90.
https://doi.org/10.1007/s000130050546
[3]  Mahmoud, R., et al. (2017) On the Energy of Non-Commuting Graph of Dihedral Groups. AIP Conference Proceedings, 1830, Article 070011.
https://doi.org/10.1063/1.4980960
[4]  Wu, B.-F., Lou, Y.-Y. and He, C.-X. (2014) Signless Laplacian and Normalized and Normalized Laplacian on the H-Join Operation of Graphs. Discrete Mathematics, Algorithms and Ap-plications, 6, Article ID: 1450046.
https://doi.org/10.1142/S1793830914500463
[5]  Torktaz, M. and Ashrafi, A.R. (2019) Spectral Properties of the Commuting Graphs of Certain Groups. AKCE International Journal of Graphs and Combinatorics, 16, 300-309.
https://doi.org/10.1016/j.akcej.2018.09.006
[6]  Grone, R., Merris, R. and Sunder, V.S. (1990) The Laplacian Spectrum of a Graph. SIAM Journal on Matrix Analysis and Applications, 11, 218-238.
https://doi.org/10.1137/0611016
[7]  Dutta, P., Dutta, J. and Nath, R.K. (2018) Laplacian Spectrum of Non-Commuting Graphs of Finite Groups. Indian Journal of Pure and Applied Mathematics, 49, 205-216.
https://doi.org/10.1007/s13226-018-0263-x
[8]  Douglas B. West. 图论导引[M]. 骆吉洲, 李建中, 译. 北京: 机械工业出版社, 2020.
[9]  Abdollahi, A., Akbari, S. and Maimani, H.R. (2006) Non-Commuting Graph of a Group. Journal of Algebra, 298, 468-492.
https://doi.org/10.1016/j.jalgebra.2006.02.015
[10]  Brouwer, A.E. and Haemers, W.H. (2012) Spectra of Graphs. Springer, New York.
https://doi.org/10.1007/978-1-4614-1939-6
[11]  徐明曜. 有限群初步(现代数学基础丛书152) [M]. 北京: 科学出版社, 2014.
[12]  Biggs, N. (1994) Algebraic Graph Theory. 2nd Edition, Cambridge University Press, Cam-bridge.
[13]  Cvetkovi?, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs: Theory and Application. Academic Press, Cambridge.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133