全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有个体自发行为变化的传染病模型的研究
The Epidemic Model with Individual Spontaneous Behavior Change

DOI: 10.12677/PM.2024.142056, PP. 576-590

Keywords: 传染病模型,几何奇异摄动理论,模仿动力学,进化博弈论
Epidemiological Modeling
, Geometric Singular Perturbation Theory, Imitation Dynamics, Evolutionary Game Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文考虑了一类带有个体自发行为变化的SIR模型。在某些传染病流行期间,易感人群可以采取正常行为或谨慎行为(如戴口罩、保持社交距离等),个体通过比较两种行为的回报(包括感染风险和经济成本)自发地选择其中之一。这种个体行为变化可以通过进化博弈论中的模仿动力学建模。在个体行为变化的时间尺度比传染病传播的时间尺度快得多的情况下,用几何奇异摄动理论分析我们建立的带有个体自发行为变化的SIR模型。借助快–慢结构和入–出积分得到模型的奇异轨道,并进行数值模拟。
In this paper, we consider a SIR model with individual spontaneous behavior change. During some epidemics, susceptibles can adopt normal or altered behaviors (such as wearing masks, social dis-tancing, etc.). Individuals spontaneously choose one or the other by comparing the payoff (including the risk of infection and the economic costs) of the two behaviors. This individual behavior changes are modeled by imitation dynamics in evolutionary game theory. Under the condition where the time scale of behavior change is much faster than the time scale of infectious disease transmission, we use the geometric singular perturbation theory to analyze the SIR model with individual spontaneous behavior change. The singular orbit of the model is obtained by slow-fast structure and entry-exit integration, and simulated numerically.

References

[1]  Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A, Containing Papers of a Mathematical and Physical Character, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[2]  Kermack, W.O. and McKendrick, A.G. (1932) Contributions to the Mathematical Theory of Epidemics. II.—The Problem of Endemicity. Proceedings of the Royal Society A, Containing Papers of a Mathematical and Physical Character, 138, 55-83.
https://doi.org/10.1098/rspa.1932.0171
[3]  Hethcote, H.W. (2000) The Mathematics of Infectious Diseases. Siam Review, 42, 599-653.
https://doi.org/10.1137/S0036144500371907
[4]  Bauch, C., d’Onofrio, A. and Manfredi, P. (2013) Behavioral Epidemiology of Infectious Diseases: An Overview. In: Manfredi, P. and d’Onofrio, A., Eds., Modeling the Interplay between Human Behavior and the Spread of Infectious Diseases, Springer, New York, 1-19.
https://doi.org/10.1007/978-1-4614-5474-8_1
[5]  Del Valle, S., Hethcote, H., Hyman, J.M. and Castillo-Chavez, C. (2005) Effects of Behavioral Changes in a Smallpox Attack Model. Mathematical Biosciences, 195, 228-251.
https://doi.org/10.1016/j.mbs.2005.03.006
[6]  Fred Braue. (2011) A Simple Model for Behaviour Change in Epidemics. Mathematical Modelling of Influenza, 11, Article No. S3.
https://doi.org/10.1186/1471-2458-11-S1-S3
[7]  Agaba, G.O., Kyrychko, Y.N. and Blyuss, K.B. (2017) Math-ematical Model for the Impact of Awareness on the Dynamics of Infectious Diseases. Mathematical Biosciences, 286, 22-30.
https://doi.org/10.1016/j.mbs.2017.01.009
[8]  Reluga, T.C., Bauch, C.T. and Galvani, A.P. (2006) Evolving Public Perceptions and Stability in Vaccine Uptake. Mathematical Biosciences, 204, 185-198.
https://doi.org/10.1016/j.mbs.2006.08.015
[9]  Bauch, C.T. and Bhattacharyya, S. (2012) Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold. PLOS Computational Biology, 8, e1002452.
https://doi.org/10.1371/journal.pcbi.1002452
[10]  Poletti, P., Ajelli, M. and Merler, S. (2012) Risk Perception and Effectiveness of Uncoordinated Behavioral Responses in an Emerging Epidemic. Mathematical Biosciences, 238, 80-89.
https://doi.org/10.1016/j.mbs.2012.04.003
[11]  López-Flores, M.M., Marchesin, D., Matos, V. and Schecter, S. (2021) Differential Equation Models in Epidemiology. 33o Colóquio Brasileiro de Matemática, Brazil, 135 p.
[12]  Poletti, P., Caprile, B., Ajelli, M., Pugliese, A. and Merler, S. (2009) Spontaneous Behavioural Changes in Response to Epidemics. Journal of Theoretical Biology, 260, 31-40.
https://doi.org/10.1016/j.jtbi.2009.04.029
[13]  Hofbauer, J. and Sigmund, K. (2004) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, 321 p.
[14]  Nowak, M.A. and Sigmund, K. (2004) Evolutionary Dynamics of Biological Games. Science, 303, 793-799.
https://doi.org/10.1126/science.1093411
[15]  Schecter, S. (2021) Geometric Singular Perturbation Theory Analysis of an Epidemic Model with Spontaneous Human Behavioral Change. Journal of Mathematical Biology, 82, Article No. 54.
https://doi.org/10.1007/s00285-021-01605-2
[16]  Mendon?a, J.P., Brum, A.A., Lyra, M.L. and Lira, S.A. Using Evolutionary Game Dynamics to Reproduce Phase Portrait Diversity in a Pandemic Scenario.
https://doi.org/10.21203/rs.3.rs-709038/v1
[17]  Lay, D.C., Lay, S.R. and McDonald, J.J. (2016) Linear Algebra and Its Applications. Pearson, London, 670 p.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413