全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于序关系与聚类分析的气田站场关键放空排放源识别
Identification of Key Venting Emission Sources at Gas Field Stations Based on Ordinal Relationship Method and Cluster Analysis

DOI: 10.12677/AEP.2024.141018, PP. 121-135

Keywords: 温室气体减排,气田站场,关键排放源,序关系法,聚类分析
Greenhouse Gas Emission Reduction
, Gas Mine Production, Key Emission Sources, Ordinal Relationship Method, Cluster Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

放空排放是气田生产中重要环节之一,双碳背景下具体放空排放量的获取及关键排放源识别一直是实现气田生产放空减排的重要途径。鉴于气田站场放空数据的复杂性及其聚合性、不完整性及其数据量庞大等特征,本文提出了基于序关系法与聚类分析的关键排放源识别模型。首先依据气田站场工艺流程特征构建了4类30种生产中放空排放量化体系;其次采用序关系法并结合站场实际计算得到站场内具体放空排放源的排放量;再应用逆距离插值法对缺失值进行补充,采用三种聚类分析算法对关键排放源进行识别,对比分析结果并综合各算法特点,找到更加平衡的分类阈值并获取分类结果;最后将该方法应用于西南某气田,分析得出新的分类阈值为2.7756,并发现三种算法的关键排放源均主要分布在增压站中。研究表明,识别结果合理可靠,为关键放空排放源识别工作提供了新思路。
Air release emission is one of the important links in gas field production, and the acquisition of specific air release emission and identification of key emission sources in the context of dual-carbon has been an important way to realize air release emission reduction in gas field production. In view of the complexity, aggregation, incompleteness and huge data volume of air release data from gas field stations, this paper proposes a key emission source identification method based on the ordinal relationship method and cluster analysis. First of all, based on the characteristics of gas field station process flow, we constructed a system of 4 categories and 30 types of air release emissions in production; secondly, we used the ordinal relationship method and combined with the actual calculation of the station to get the emissions of specific air release emission sources; then we applied the inverse distance interpolation method to supplement the missing values, and used three kinds of cluster analysis algorithms to identify the key emission sources, compared the results of the analysis and synthesized the characteristics of the algorithms, and then we found the balanced classification thresholds and obtained the classification results. Finally, the method is applied to an actual case in a gas field in Southwest China, and the new classification threshold is 2.775581, and it is found that the key emission sources of the three algorithms are mainly distrib-uted in the booster station. The study shows that the identification results are reasonable and re-liable, and provides new ideas for the identification of key venting emission sources.

References

[1]  World Meteorological Organization (WMO) (2020) WMO Provisional Report on the State of the Global Climate in 2020. WMO, Geneva.
[2]  李北陵. 甲烷减排, 既是挑战又是机遇[N]. 中国石化报, 2021-11-26(005).
[3]  张道伟. 四川盆地未来十年天然气工业发展展望[J]. 天然气工业, 2021, 41(8): 34-45.
[4]  周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8.
[5]  李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业, 2021, 41(8): 1-11.
[6]  汪莉丽, 闫强, 周凤英. 天然气利用有效性的指标体系研究[J]. 可持续发展, 2018, 8(1): 58-64.
https://doi.org/10.12677/SD.2018.81007
[7]  方昆升, 汪彪. 碳中和目标下的美丽中国低碳发展路径研究[J]. 气候变化研究快报, 2023, 12(2): 352-360.
https://doi.org/10.12677/CCRL.2023.122037
[8]  徐瑞. 西南地区天然气勘探开发环境影响评价存在的挑战和建议探析[J]. 世界生态学, 2023, 12(3): 304-307.
https://doi.org/10.12677/IJE.2023.123037
[9]  张仁健, 王明星, 李晶, 杨昕, 王秀玲. 中国甲烷排放现状[J]. 气候与环境研究, 1999(2): 67-75.
[10]  Zhang, B., Chen, G.Q., Li, J.S. and Tao, L. (2014) Methane Emissions of En-ergy Activities in China 1980-2007. Renewable and SustainableEnergy Reviews, 29, 11-21.
https://doi.org/10.1016/j.rser.2013.08.060
[11]  Peng, S.S., Piao, S.L. and Bousquet, P. (2016) Inventory of An-thropogenic Methane Emissions in Mainland China from 1980 to 2010. Atmospheric Chemistry and Physics, 16, 14545-14562.
https://doi.org/10.5194/acp-16-14545-2016
[12]  Mac Kinnon, M., Heydarzadeh, Z., Doan, Q., Ngo, C. and Reed, J. (2018) Need for a Marginal Methodology in Assessing Natural Gas System Methane Emissions in Response to Incremental Consumption. Journal of the Air & Waste Management Association, 68, 1139-1147.
https://doi.org/10.1080/10962247.2018.1476274
[13]  Chen, Q., Dunn, J.B. and Allen, D.T. (2019) Aggregation and Allocation of Greenhouse Gas Emissions in Oil and Gas Production: Implications for Life-Cycle Greenhouse Gas Burdens. ACS Sustainable Chemistry & Engineering, 7, 17065-17073.
https://doi.org/10.1021/acssuschemeng.9b03136
[14]  黄满堂, 王体健, 赵雄飞, 谢晓栋, 王德羿. 2015年中国地区大气甲烷排放估计及空间分布[J]. 环境科学学报, 2019, 39(5): 1371-1380.
[15]  杨梓诚, 高俊莲, 唐旭, 仲冰, 张博. 中国油气行业甲烷逃逸排放核算与时空特征研究[J]. 石油科学通报, 2021, 6(2): 302-314.
[16]  孙永彪, 张春香, 解东来, 那媛媛, 张鑫. 天然气系统甲烷排放测量与估算研究现状[J]. 油气田地面工程, 2020, 39(10): 30-37.
[17]  张星雨, 潘季荣, 解东来, 詹巧玲, 张永清. 天然气行业甲烷排放检测与控制——国外研究进展[C]//中国土木工程学会燃气分会. 中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会论文集(上册). 天津: 煤气与热力杂志社, 2019: 163-168.
[18]  王学军, 郭亚军, 兰天. 构造一致性判断矩阵的序关系分析法[J]. 东北大学学报, 2006, 27(1): 115-118.
[19]  王雯悦, 伍颖, 尤潇, 等. 山区输气管道地震风险评价方法研究[J]. 煤气与热力, 2022, 42(10): 7-12+15.
https://doi.org/10.13608/j.cnki.1000-4416.2022.10.004
[20]  薛树强, 杨文龙, 李保金. 反距离加权插值函数性质及最优插值条件[J]. 测绘科学, 2022, 47(10): 1-7+65.
https://doi.org/10.16251/j.cnki.1009-2307.2022.10.001
[21]  高翀. 基于DBSCAN的节点仪器桩号自匹配方法设计与验证[J]. 石油物探, 2023, 62(S1): 45-51.
[22]  林涛, 赵璨. 最近邻优化的k-means聚类算法[J]. 计算机科学, 2019, 46(S2): 216-219.
[23]  朱瑞文, 王雅文, 林欢, 李帅赟, 吴彦芳. 一种基于层次聚类的测试用例集约简方法[J]. 北京邮电大学学报, 2023, 46(4): 9-14.
https://doi.org/10.13190/j.jbupt.2022-080

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413