全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Aqueous Extract of Boscia senegalensis on Hyperglycemia, Hyperlipidemia and Oxidative Stress Induced in Rats

DOI: 10.4236/jdm.2024.141006, PP. 49-68

Keywords: Boscia Senegalensis, Hypoglycemic, Hypolipidemic, Hyperlipidemic Diet, An-tioxidant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Boscia aqueous extract. senegalensis on hyperglycemia, hyperlipidemia and oxidative stress induced in rats. The aqueous extract was prepared from B. senegalensis seed powders under the extraction conditions: time (10 min), temperature (55˚C) and the ratio of mass of flour/volume of water (3/10 g/mL). Male wistar rats aged 6 to 8 weeks were acclimated and divided into 8 groups of 5 rats each: two normal control groups which received a normal standard diet (3810 kcal/kg), and six test groups which were subjected to a hyperlipidemic diet (5310 Kcal/kg). All groups of animals were fed in this manner for 8 weeks to induce hyperglycemia, hyperlipidemia and oxidative stress. After induction the animals were treated either with distilled water for the normal and negative control groups or with atorvastatin for the positive control group or with the extract of B. senegalensis. (125, 250 and 500 mg/kg) for the test groups. Fasting blood glucose was taken every 7 days during induction. After sacrifice, biochemical and oxidative stress parameters were measured. The aqueous extract of B. senegalensis significantly decreased (p < 0.001) fasting blood glucose from 129.4 ± 6.4 mg/dL to 66.0 ± 5.3 mg/dL at the dose 500 mg/kg. This dose was found to exert greater effects in lowering blood sugar levels compared to other doses. For the lipid profile the same significant decrease (p < 0.001) was observed in triglycerides which went from 71.4 ± 1.1 versus 47.4 ± 0.9 mg/dL and LDL cholesterol which went from 36 .9 ± 1.5 versus 17.4 ± 1.2 mg/dL. On oxidative stress, the MDA level decreased significantly from 2.64 ± 0.01 versus 1.34 ± 0.10 μM. We can affirm on the basis of the results that the aqueous extract of B. senegalensis at a dose of 500 mg/kg has the capacity to reduce blood sugar, improve the quality of the lipid profile and reduce oxidative stress. Thus, the results reveal that the aqueous extract of B. senegalensis has powerful hypoglycemic, hypolipidemic and antioxidant properties.

References

[1]  Judith, M.M.A., Modestine, K.S.M., Babayana, E.N., et al. (2021) Evaluation of Toxicity, Antihyperglycemic and Hypoglycemic Activities of Mixtures of Extracts of 3 Varieties of Oyster Mushrooms. Food Science & Nutrition Research, 4, 1-8.
https://doi.org/10.33425/2641-4295.1049
[2]  ADA (American Diabetes Association) (2008) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 31, S55-S60.
https://doi.org/10.2337/dc08-S055
[3]  Inoue, T., Hayashi, M., Takayanagi, K. and Morooka, S. (2002) Lipid-Lowering Therapy with Fluvastatin Inhibits Oxidative Modification of Low Density Lipoprotein and Improves Vascular Endothelial Function in Hypercholesterolemic Patients. Atherosclerosis, 160, 369-376.
https://doi.org/10.1016/S0021-9150(01)00585-8
[4]  Nurshad, A., Rahanuma Raihanu, K., Khandaker Atkia, F., Taher, A. and Farjana, I. (2023) Prevalence of Dyslipidemia and Its Associated Factors among University Academic Staff and Students in Bangladesh. BMC Cardiovascular Disorders, 23, Article No. 366.
https://doi.org/10.1186/s12872-023-03399-1
[5]  Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G.P. and Calò, L.A. (2013) The Role of Oxidized Low-Density Lipoproteins in Atherosclerosis: The Myths and the Facts. Mediators of Inflammation, 2013, Article ID: 714653.
https://doi.org/10.1155/2013/714653
[6]  Mvungi, R., Fourie, J.M., Scarlatescu, O., Nel, G. and Scholtz, W. (2020) PASCAR and WHF Cardiovascular Diseases Scorecard Project. Cardiovascular Journal of Africa, 31, 103-110.
https://doi.org/10.5830/CVJA-2020-015
[7]  Merchant, R.A., et al. (2020) Prevalence of Metabolic Syndrome and Association with Grip Strength in Older Adults: Findings from the HOPE Study. Diabetes, Metabolic Syndrome and Obesity, 13, 2677-2686.
https://doi.org/10.2147/DMSO.S260544
[8]  Murti, K., Lambole, V., Panchal, M. and Kumar, U. (2011) Antidiabetic and Antihyperlipidemic Activity of Root of Boerhaavia diffusa on Streptozotocin Induced Diabetic Rats. Pharmacologyonline, 1, 15-21.
[9]  Turner, R.M. and Pirmohamed, M. (2019) Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. Journal of Clinical Medicine, 9, Article 22.
https://doi.org/10.3390/jcm9010022
[10]  Sofowora, A., Ogunbodede, E. and Onayade, A. (2013) The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10, 210-229.
https://doi.org/10.4314/ajtcam.v10i5.2
[11]  Ngatchic, J.T.M., Njintang, N.Y., Bernard, C., Oben, J. and Mbofung, C.M. (2016) Lipid-Lowering Properties of Protein-Rich Mucuna Product. Nutrire, 41, Article No. 2.
https://doi.org/10.1186/s41110-016-0003-0
[12]  Smith, J.A., van den Broek, F.A.R., Martorel, J.C., Hackbarth, H., Ruksenas, O. and Zeller, W. (2007) Principles and Practice in Ethical Review of Animal Experiments across Europe: Summary of the Report of a Felasa Working Group on Ethical Evaluation of Animal Experiments. Laboratory Animals, 41, 143-160.
https://doi.org/10.1258/002367707780378212
[13]  Dongmo, F., Sokeng Dongmo, S. and Njintang Yanou, N. (2017) Aqueous Extraction Optimization of the Antioxidant and Antihyperglycemic Components of Boscia senegalensis Using Central Composite Design Methodology. Journal of Food Science & Nutrition, 3, 1-7.
https://doi.org/10.24966/FSN-1076/100015
[14]  Edeoga, H.O., Okwu, D.E. and Mbaebie, B.O. (2005) Phytochemical Constituents of Some Nigerian Medicinal Plants. African Journal of Biotechnology, 4, 685-688.
https://doi.org/10.5897/AJB2005.000-3127
[15]  Khanam, Z., Wen, C.S. and Bhat, I.U.H. (2015) Phytochemical Screening and Antimicrobial Activity of Root and Stem Extracts of Wild Eurycoma longifolia Jack (Tongkat Ali). Journal of King Saud University—Science, 27, 23-30.
https://doi.org/10.1016/j.jksus.2014.04.006
[16]  Ghica, A., Drumea, V., Morosan, A., Michaiescu, D.E., Costa, L., Luta, E.A., Mihai, D.P., Balaci, D.T., Fita, A.C., Olaru, O.T., et al. (2023) Phytochemical Screening and Antioxidant Potential Selected Extracts from Betula alba var. pendala Roth; Glycyrrhiza glabra L., and Avena sativa L. Plants, 12, Article 2510.
https://doi.org/10.3390/plants12132510
[17]  Jayalakshmi, B., Raveesha, K.A. and Amruthesh, K.N. (2011) Phytochemical Investigations and Antibacterial Activity of Some Medicinal Plants against Pathogenic Bacteria. Journal of Applied Pharmaceutical Science, 1, 124-128.
[18]  Dohou, R., Yamni, K., Tahrouch, S., Hassani, L.I., Badoc, A. and Gmira, N. (2003) Screening phytochimique d’une endémique iberomarocaine, Thymelaea lythroides. Bulletin de la Société de pharmacie de Bordeaux, 142, 61-78.
[19]  Sabri, F.Z., Belarbi, M., Sabri, S. and Alsayadi, M. (2012) Phytochemical Screening and Identification of Some Compounds from Mallow. The Journal of Natural Product and Plant Resources, 2, 512-516.
[20]  Reznik, Y. and Jubin, L. (2020) Post-Prandial Glucose Control: Contribution of Ultra-Fast Acting Insulin Analogues. Médecine des Maladies Métaboliques, 14, 718-726.
https://doi.org/10.1016/j.mmm.2020.09.004
[21]  Reitman, S. and Frankel, S. (1957) A Colorimetric Method for the Determination of Serum Glutamic Oxlacetic and Glutamic Pyruvic Transaminases. American Journal of Clinical Pathology, 28, 56-63.
https://doi.org/10.1093/ajcp/28.1.56
[22]  Bartels, H., Böhmer, M. and Heierli, C. (1972) Serum Kreatininbestimmung Ohne Enteiweissen. Clinica Chimica Acta, 37, 193-197.
https://doi.org/10.1016/0009-8981(72)90432-9
[23]  Israni, D.A., Patel, K.V. and Gandhi, T.R. (2010) Anti-Hyperlipidemic Activity of Aqueous Extract of Terminalia Chebula & Gaumutra in High Cholesterol Diet Fed Rats. International Journal of Pharmaceutical Sciences and Research, 1, 48-59.
[24]  Gallou-Kabani, C., Vige, A., Gross, M.S., Rabe’s, J.P., Boileau, C., Larue-Achagiotis, C., Tome, D., Jais, J.P. and Junien, C. (2007) C57BL/6J and A/J Mice Fed a High-Fat Diet Delineate Components of Metabolic Syndrome. Obesity, 15, 1996-2005.
https://doi.org/10.1038/oby.2007.238
[25]  Lee, S., Lee, M.S., Chang, E., Lee, Y., Lee, J., Kim, J., Kim, C.T., Kim, I.H. and Kim, Y. (2020) Mulberry Fruit Extract Promotes Serum HDL-Cholesterol Levels and Suppresses Hepatic microRNA-33 Expression in Rats Fed High Cholesterol/Cholic Acid Diet. Nutrients, 12, Article 1499.
https://doi.org/10.3390/nu12051499
[26]  Minokoshi, Y., Toda, C. and Okamoto, S. (2012) Regulatory Role of Leptin in Glucose and Lipid Metabolism in Skeletal Muscle. Indian Journal of Endocrinology and Metabolism, 16, S562-S568.
https://doi.org/10.4103/2230-8210.105573
[27]  Vougat, R., Foyet, H., Garabed, R. and Ziebe, R. (2015) Antioxidant Activity and Phytochemical Constituent of Two Plants Used to Manage Foot and Mouth Disease in the Far North Region of Cameroon. Journal of Intercultural Ethnopharmacology, 4, 40-46.
https://doi.org/10.5455/jice.20141020064838
[28]  Karthikesan, K., Pari, L. and Menon, V.P. (2010) Antihyperlipidemic Effect of Chlorogenic Acid and Tetrahydrocurcumin in Rats Subjected to Diabetogenic Agents. Chemico-Biological Interactions, 188, 643-650.
https://doi.org/10.1016/j.cbi.2010.07.026
[29]  Monente, C., Ludwig, I.A., Irigoyen, A., De Peña, M.P. and Cid, C. (2015) Assessment of Total (Free and Bound) Phenolic Compounds in Spent Coffee Extracts. Journal of Agricultural and Food Chemistry, 63, 4327-4334.
https://doi.org/10.1021/acs.jafc.5b01619
[30]  Clegg, D.J., Gotoh, K., Kemp, C., Wortman, M.D., Benoit, S.C., Brown, L.M., D’Alessio, D., Tso, P., Seeley, R.J. and Woods, S.C. (2011) Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity. Physiology & Behavior, 103, 10-16.
https://doi.org/10.1016/j.physbeh.2011.01.010
[31]  Kumarappan, C. and Mandal, S.C. (2015) Antidiabetic Effect of Polyphenol Enriched Extract of Ichnocarpus frutescens on Key Carbohydrate Metabolic Enzymes. International Journal of Diabetes in Developing Countries, 35, 425-431.
https://doi.org/10.1007/s13410-015-0295-2
[32]  Sakine, Adam. Mahmout, Y., Dijoux-Franca, MG.Gbenou, J. and Moudachirou, M. (2012) In Vitro Anti-Hyperglycaemic Effect of Glucocapparin Isolated from the Seeds of Boscia senegalensis (Pers.) Lam. ex Poiret. African Journal of Biotechnology, 11, 6345-6349.
https://doi.org/10.5897/AJB11.3445
[33]  Dogo, S. (1994) Developpementde Methodes Alternatives de Controledes Principaux Insectes Ragageurs des denrées emmagasinées au Senegal par l’utilisation des plantes indigenes. Ph.D. Thesis, Faculté des Sciences Agrono miques de Gembloux, Gembloux.
[34]  Hamza, N., Berke, B., Cheze, C., Agli, A.N., Robinson, P., Gin, H. and Moore, N. (2010) Prevention of Type 2 Diabetes Induced by High Fat Diet in the C57BL/6J Mouse by Two Medicinal Plants Used in Traditional Treatment of Diabetes in the East of Algeria. Journal of Ethnopharmacology, 128, 513-518.
https://doi.org/10.1016/j.jep.2010.01.004
[35]  Kennedy, D.J. and Kashyap, S.R. (2011) Pathogenic Role of Scavenger Receptor CD36 in the Metabolic Syndrome and Diabetes. Metabolic Syndrome and Related Disorders, 9, 239-245.
https://doi.org/10.1089/met.2011.0003
[36]  Lin, T.L., Lin, H.H., Chen, C.C., Lin, M.C., Chou, M.C. and Wang, C.J. (2007) Hibiscus sabdariffa Extract Reduces Serum Cholesterol in Men and Women. Nutrition Research, 27, 140-145.
https://doi.org/10.1016/j.nutres.2007.01.007
[37]  Frota, K.M.G., Mendonça, S., Saldiva, P.H.N., Cruz, R.J. and Arêas, J.A.G. (2008) Cholesterol-Lowering Properties of Whole Cowpea Seed and Its Protein Isolate in Hamsters. Journal of Food Science, 73, H235-H240.
https://doi.org/10.1111/j.1750-3841.2008.00953.x
[38]  Macarulla, M.T., Medina, C., Diego, M.A.D., Chávarri, M., Zulet, M.á., Martínez, J.A., Nöel-Suberville, C., Higueret, P. and Portillo, M.P. (2001) Effects of the Whole Seed and a Protein Isolate of Faba Bean (Vicia faba) on the Cholesterol Metabolism of Hypercholesterolaemic Rats. British Journal of Nutrition, 85, 607-614.
https://doi.org/10.1079/BJN2000330
[39]  Nwozo, S.O., Orojobi, B.O. and Adaramoye, O.A. (2011) Hypolipidemic and Antioxidant Potentials of Xylopia aethiopica Seed Extract in Hypercholesterolemic Rats. Journal of Medicinal Food, 14, 114-119.
https://doi.org/10.1089/jmf.2008.0168
[40]  Kenneth, R. and Feingold, M.D. (2022) Lipid and Lipoprotein Metabolism. Endocrinology and Metabolism Clinics of North America, 51, 437-458.
https://doi.org/10.1016/j.ecl.2022.02.008
[41]  Sunil, C., Ignacimuthu, S. and Kumarappan, C. (2012) Hypolipidemic Activity of Symplocos cochinchinensis S. Moore Leaves in Hyperlipidemic Rats. Journal of Natural Medicines, 66, 32-38.
https://doi.org/10.1007/s11418-011-0548-4
[42]  Yazdanparast, R. and Bahramikia, S. (2008) Evaluation of the Effect of Anethum graveolens L. Crude Extracts on Serum Lipids and Lipoproteins proFiles in Hypercholesterolaemic Rats. DARU Journal of Pharmaceutical Sciences, 16, 88-94.
[43]  Rigamonti, E., Parolini, C., Marchesi, M., Diani, E., Brambilla, S., Sirtori, C.R. and Chiesa, G. (2010) Hypolipidemic Effect of Dietary Pea Proteins: Impact on Genes Regulating Hepatic Lipid Metabolism. Molecular Nutrition & Food Research, 54, S24-S30.
https://doi.org/10.1002/mnfr.200900251
[44]  Kusku-Kiraz, Z., Mehmetçik, G., Doǧru-Abbasoǧlu, S. and Uysal, M. (2010) Artichoke Leaf Extract Reduces Oxidative Stress and Lipoprotein Dyshomeostasis in Rats Fed on High Cholesterol Diet: Effect of Artichoke on Lipoprotein Oxidation. Phytotherapy Research, 24, 565-570.
https://doi.org/10.1002/ptr.2985
[45]  Chen, C.C., Chou, F.P., Ho, Y.C., Lin, W.L., Wang, C.P., Kao, E.S., Huang, A.C. and Wang, C.J. (2004) Inhibitory Effects of Hibiscus sabdariffa L Extract on Low-Density Lipoprotein Oxidation and Anti-Hyperlipidemia in Fructose-Fed and Cholesterol-Fed Rats. Journal of the Science of Food and Agriculture, 84, 1989-1996.
https://doi.org/10.1002/jsfa.1872
[46]  Habib, M.Y., Islam, M.S., Awal, M.A. and Khan, M.A. (2005) A Novel Approach for Diabetic Patients. Pakistan Journal of Nutrition, 4, 17-21.
https://doi.org/10.3923/pjn.2005.17.21
[47]  Senanayake, G.V.K., Fukuda, N., Nshizono, S., Wang, Y.M., Nagao, K., Yanagita, T., Iwamoto, M. and Ohta, H. (2012) Mechanisms Underlying Decreased Hepatic Triacylglycerol and Cholesterol by Dietary Bitter Melon Extract in the Rat. Lipids, 47, 495-503.
https://doi.org/10.1007/s11745-012-3667-0
[48]  Sivajothi, V., Dey, A., Jayakar, B. and Rajkapoor, B. (2008) Antihyperglycemic, Antihyperlipidemic and Antioxidant Effect of Phyllanthus rheedii on Streptozotocin Induced Diabetic Rat. International Journal of Production Research, 7, 53-59.
[49]  Yue, K.K.M., Leung, S., Man, P., Yeung, W., Chung, W., Lee, K., Leung, A.W.N. and Cheng, C.H.K. (2005) Alterations in Antioxidant Enzyme Activities in the Eyes, Aorta and Kidneys of Diabetic Rats Relevant to the Onset of Oxidative Stress. Life Sciences, 77, 721-734.
https://doi.org/10.1016/j.lfs.2004.10.081
[50]  Yan, H. and Harding, J.J. (1997) Glycation-Induced Inactivation and Loss of Antigenicity of Catalase and Superoxide Dismutase. Biochemical Journal, 328, 599-605.
https://doi.org/10.1042/bj3280599

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133