全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polyurethane Hybrid-Based Wood Adhesive: Review

DOI: 10.4236/ojpchem.2024.141003, PP. 41-62

Keywords: Vinyl Acetate, Hybrid, Polyurethane, Wood, Adhesive

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on commercially available polyvinyl alcohol (PVA) stabilised polyvinyl acetate (PVAc), emulsion adhesives are neither heat nor moisture-resistant and show weak strength at high relative humidity and high temperatures. Pre- or post-crosslinking is another method used to manufacture a conventional vinyl-based homopolymers or copolymers system with improved water resistance. Vinyl neodecanoate (VeoVa), N-methylolacrylamide (NMA), Methacrylamide, methacrylic acid (MAA), and other self-crosslinking comonomers are typically inserted to produce highly water-resistant vinyl based homopolymers or copolymers. Additionally, organic crosslinkers like glyoxal, glutaraldehyde, citric acid, tartaric acid, and the like, as well as inorganic crosslinkers like acidic metal salts like aluminium chloride, aluminium nitrate, boric acid, and the like, can be used to prepare the highly water-resistant vinyl based homopolymers or copolymers. It is also possible to combine the self-crosslinking comonomers with the organic crosslinkers. Recently, a different hybrid chemistry has been developed that improves lap shear strength, has outstanding water resistance, good durability, and doesn’t require any additional crosslinker agents. Two distinct polymers were combined to develop hybrid polymers. They usually involve mixing an organic polymer with a polymer. There are many capping agents that are used for polyurethanes to produce acrylics that are capped with polyurethane and used as an oligomer in PVAc wood glue. Here, in this paper, we reviewed the different hybrid chemistry based on polyurethane chemistry for wood bonding applications.

References

[1]  Dhawale, P.V., Vineeth, S.K., Gadhave, R.V. and Mahanwar, P.A. (2021) Cellulose Stabilized Polyvinyl Acetate Emulsion: Review. Open Journal of Organic Polymer Materials, 11, 51-66.
https://doi.org/10.4236/ojopm.2021.112002
[2]  González, G., Dimonie, V., Sudol, D., Yue, H., Klein, A. and El-Aasser, M. (2000) Characterization of Poly(Vinyl Alcohol) during the Emulsion Polymerization of Vinyl Acetate Using Poly(Vinyl Alcohol) as Emulsifier. Journal of Polymer Science Part A: Polymer Chemistry, 34, 849-862.
https://doi.org/10.1002/(SICI)1099-0518(19960415)34:5<849::AID-POLA14>3.0.CO;2-I
[3]  Wang, Z., Li, Z., Gu, Z., Hong, Y. and Cheng, L. (2012) Preparation, Characterization and Properties of Starch-Based Wood Adhesive. Carbohydrate Polymers, 88, 699-706.
https://doi.org/10.1016/j.carbpol.2012.01.023
[4]  Dhawale, P., Gadhave, S. and Gadhave, R. (2023) Environmentally Friendly Chitosan-Based Wood/Wood Composite Adhesive: Review. Green and Sustainable Chemistry, 13, 237-253.
https://doi.org/10.4236/gsc.2023.134013
[5]  Athawale, V.D. and Lele, V. (2000) Thermal Studies on Granular Maize Starch and Its Graft Copolymers with Vinyl Monomers. Starch-Starke, 52, 205-213.
https://doi.org/10.1002/1521-379X(200007)52:6/7<205::AID-STAR205>3.0.CO;2-3
[6]  Gurruchaga, M., Goni, I., Valero, M. and Guzmán, G.M. (1992) Graft Copolymerization of Hydroxylic Methacrylates and Ethyl Acrylate onto Amylopectin. Polymer (Guildf), 33, 2860-2862.
https://doi.org/10.1016/0032-3861(92)90467-B
[7]  Kim, S. and Kim, H.-J. (2006) Thermal Stability and Viscoelastic Properties of MF/PVAc Hybrid Resins on the Adhesion for Engineered Flooring in Under Heating System; ONDOL. Thermochimica Acta, 444, 134-140.
https://doi.org/10.1016/j.tca.2006.03.009
[8]  Gadhave, R. (2023) Comparative Study of Effect of Addition of Calcium Carbonate and Clay on the Performance Properties of Polyvinyl Acetate Wood Glue. Open Journal of Polymer Chemistry, 13, 1-13.
https://doi.org/10.4236/ojpchem.2023.131001
[9]  Meshram, M.W., Patil, V.V., Mhaske, S.T. and Thorat, B.N. (2009) Graft Copolymers of Starch and Its Application in Textiles. Carbohydrate Polymers, 75, 71-78.
https://doi.org/10.1016/j.carbpol.2008.06.012
[10]  Kaewtatip, K. and Tanrattanakul, V. (2008) Preparation of Cassava Starch Grafted with Polystyrene by Suspension Polymerization. Carbohydrate Polymers, 73, 647-655.
https://doi.org/10.1016/j.carbpol.2008.01.006
[11]  Zhao, L., Liu, Y., Xu, Z., Zhang, Y., Zhao, F. and Zhang, S. (2011) State of Research and Trends in Development of Wood Adhesives. Forestry Studies in China, 13, 321-326.
https://doi.org/10.1007/s11632-013-0401-9
[12]  Brown, N.R. and Frazier, C.E. (2007) Cross-Linking Poly[(Vinyl Acetate)-Co-N-Methylolacrylamide] Latex Adhesive Performance Part I: N-Methylolacrylamide (NMA) Distribution. International Journal of Adhesion and Adhesives, 27, 547-553.
https://doi.org/10.1016/j.ijadhadh.2006.10.002
[13]  Gadhave, R.V. (2023) Synthesis and Characterization of Starch-Stabilized Polyvinyl Acetate-N-Methylol Acrylamide Polymer-Based Wood Adhesive. Journal of the Indian Academy of Wood Science, 20, 51-61.
https://doi.org/10.1007/s13196-023-00312-3
[14]  De Bruyn, H., Sprong, E., Gaborieau, M., Roper, J.A. and Gilbert, R.G. (2007) Starch-Graft-(Synthetic Copolymer) Latexes Initiated with Ce4+ and Stabilized by Amylopectin. Journal of Polymer Science Part A: Polymer Chemistry, 45, 4185-4192.
https://doi.org/10.1002/pola.22189
[15]  Mihulja, G., Zivkovic, V., Poljak, D., Sefc, B. and Sedlar, T. (2021) Influence of Citric Acid on the Bond Strength of Beech Wood. Polymers (Basel), 13, Article 2801.
https://doi.org/10.3390/polym13162801
[16]  Ando, D. and Umemura, K. (2021) Bond Structures between Wood Components and Citric Acid in Wood-Based Molding. Polymers, 13, Article 58.
https://doi.org/10.3390/polym13010058
[17]  Gadhave, R.V., S. K., V., Mahanwar, P.A. and Gadekar, P.T. (2021) Effect of Addition of Boric Acid on Thermo-Mechanical Properties of Microcrystalline Cellulose/Polyvinyl Alcohol Blend and Applicability as Wood Adhesive. Journal of Adhesion Science and Technology, 35, 1072-1086.
https://doi.org/10.1080/01694243.2020.1832775
[18]  Lu, J., Easteal, A.J. and Edmonds, N.R. (2011) Crosslinkable Poly(Vinyl Acetate) Emulsions for Wood Adhesive. Pigment & Resin Technology, 40, 161-168.
https://doi.org/10.1108/03699421111130423
[19]  Chiozza, F. and Pizzo, B. (2016) Innovation in Poly(Vinyl Acetate) Water Resistant D3 Glues Used in Wood Industry. International Journal of Adhesion and Adhesives, 70, 102-109.
https://doi.org/10.1016/j.ijadhadh.2016.06.003
[20]  Gadhave, R.V. (2022) Importance of Dynamic Mechanical Analysis to Predict Performance of the Polyvinyl Acetate Wood Adhesives in Summer Season. Open Journal of Polymer Chemistry, 12, 93-100.
https://doi.org/10.4236/ojpchem.2022.123006
[21]  Gadhave, R.V. and Vineeth, S.K. (2023) Synthesis and Characterization of Starch Stabilized Polyvinyl Acetate-Acrylic Acid Copolymer-Based Wood Adhesive. Polymer Bulletin, 80, 10335-10354.
https://doi.org/10.1007/s00289-022-04558-8
[22]  Peruzzo, P.J., Bonnefond, A., Reyes, Y., Fernández, M., Fare, J., Ronne, E., Paulis, M. and Leiza, J.R. (2014) Beneficial In-Situ Incorporation of Nanoclay to Waterborne PVAc/PVOH Dispersion Adhesives for Wood Applications. International Journal of Adhesion and Adhesives, 48, 295-302.
https://doi.org/10.1016/j.ijadhadh.2013.09.042
[23]  Gadhave, R.V. (2023) Xanthan Gum—Bio-Based Raw Material for Wood Adhesive. Green and Sustainable Chemistry, 13, 153-161.
https://doi.org/10.4236/gsc.2023.132008
[24]  Cui, H., Fang, Q. and Du, G. (2014) Dynamic Mechanical and Thermal Kinetics of Polyvinyl Acetate Type Emulsions from Vinyl Acetate, N-Hydroxymethyl Acrylamide, and Montmorillonite. Advances in Polymer Technology, 33, Article 21393.
https://doi.org/10.1002/adv.21393
[25]  Qiao, L., Coveny, P.K. and Easteal, A.J. (2002) Modifications of Poly(Vinyl Alcohol) for Use in Poly(Vinyl Acetate) Emulsion Wood Adhesives. Pigment & Resin Technology, 31, 88-95.
https://doi.org/10.1108/03699420210420378
[26]  Nakamae, M., Yuki, K., Sato, T. and Maruyama, H. (1999) Preparation of Polymer Emulsions Using a Poly(Vinyl Alcohol) as Protective Colloid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 367-372.
https://doi.org/10.1016/S0927-7757(98)00458-0
[27]  Mori, A., Kitayama, T., Takatani, M. and Okamoto, T. (2004) A Honeymoon-Type Adhesive for Wood Products Based on Acetoacetylated Poly(Vinyl Alcohol) and Diamines: Effect of Diamines and Degree of Acetoacetylation. Journal of Applied Polymer Science, 91, 2966-2972.
https://doi.org/10.1002/app.13491
[28]  Fang, Q., Cui, H.-W. and Du, G.-B. (2013) Preparation and Characterization of PVAc-NMA-MMT. Journal of Thermoplastic Composite Materials, 26, 1393-1406.
https://doi.org/10.1177/0892705712461644
[29]  Cui, H.-W. and Du, G.-B. (2013) Development of Novel Polymers Prepared by Vinyl Acetate and N-Hydroxymethyl Acrylamide. Journal of Thermoplastic Composite Materials, 26, 762-776.
https://doi.org/10.1177/0892705711429165
[30]  Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T. and Kasbe, P.S. (2020) A Study on the Effect of Starch-Polyvinyl Alcohol Blends by Addition of Citric Acid and Boric Acid for Enhancement in Performance Properties of Polyvinyl Acetate-Based Wood Adhesive. Journal of the Indian Academy of Wood Science, 17, 9-20.
https://doi.org/10.1007/s13196-019-00249-6
[31]  Gadhave, R. (2022) Lactic Acid-Sustainable Raw Material for Biodegradable Hot Melt Adhesive: Review. Open Journal of Organic Polymer Materials, 12, 31-45.
https://doi.org/10.4236/ojopm.2022.123003
[32]  Gadhave, R. (2023) Radio Frequency Gluing Technique for Wood-to-Wood Bonding: Review. Open Journal of Polymer Chemistry, 13, 15-26.
https://doi.org/10.4236/ojpchem.2023.132002
[33]  Poh, B.T. and Firdaus, S.Z. (2010) Effect of Hybrid Tackifiers on Adhesion Properties of Epoxidized Natural Rubber-Based Pressure-Sensitive Adhesives. Journal of Polymers and the Environment, 18, 335-338.
https://doi.org/10.1007/s10924-010-0197-9
[34]  Vineeth, S. and Gadhave, R. (2020) Sustainable Raw Materials in Hot Melt Adhesives: A Review. Open Journal of Polymer Chemistry, 10, 49-65.
[35]  Kaboorani, A. and Riedl, B. (2011) Effects of Adding Nano-Clay on Performance of Polyvinyl Acetate (PVA) as a Wood Adhesive. Composites Part A: Applied Science and Manufacturing, 42, 1031-1039.
https://doi.org/10.1016/j.compositesa.2011.04.007
[36]  Qiao, L. and Easteal, A.J. (2001) Aspects of the Performance of PVAc Adhesives in Wood Joints. Pigment & Resin Technology, 30, 79-87.
https://doi.org/10.1108/03699420110381599
[37]  López-Suevos, F. and Frazier, C.E. (2006) Rheology of Latex Films Bonded to Wood: Influence of Cross-Linking. Holzforschung, 60, 47-52.
https://doi.org/10.1515/HF.2006.009
[38]  Salvini, A., Saija, L.M., Finocchiaro, S., Gianni, G., Giannelli, C. and Tondi, G. (2009) A New Methodology in the Study of PVAc-Based Adhesive Formulations. Journal of Applied Polymer Science, 114, 3841-3854.
https://doi.org/10.1002/app.31032
[39]  Manock, H.L. (2000) New Developments in Polyurethane and PU/Acrylic Dispersions. Pigment & Resin Technology, 29, 143-151.
https://doi.org/10.1108/03699420010334295
[40]  Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O., Wang, S. (2012) Nanocrystalline Cellulose (NCC): A Renewable Nano-Material for Polyvinyl Acetate (PVA) Adhesive. European Polymer Journal, 48, 1829-1837.
https://doi.org/10.1016/j.eurpolymj.2012.08.008
[41]  Li, M., Daniels, E.S., Dimonie, V., Sudol, E.D. and El-Aasser, M.S. (2005) Preparation of Polyurethane/Acrylic Hybrid Nanoparticles via a Miniemulsion Polymerization Process. Macromolecules, 38, 4183-4192.
https://doi.org/10.1021/ma048141z
[42]  Pardini, O.R. and Amalvy, J.I. (2008) FTIR, 1H-NMR Spectra, and Thermal Characterization of Water-Based Polyurethane/Acrylic Hybrids. Journal of Applied Polymer Science, 107, 1207-1214.
https://doi.org/10.1002/app.27188
[43]  Zhu, X., Jiang, X., Zhang, Z. and Kong, X.Z. (2008) Influence of Ingredients in Water-Based Polyurethane-Acrylic Hybrid Latexes on Latex Properties. Progress in Organic Coatings, 62, 251-257.
https://doi.org/10.1016/j.porgcoat.2007.12.006
[44]  Peruzzo, P.J., Anbinder, P.S., Pardini, O.R., Vega, J., Costa, C.A., Galembeck, F. and Amalvy, J.I. (2011) Waterborne Polyurethane/Acrylate: Comparison of Hybrid and Blend Systems. Progress in Organic Coatings, 72, 429-437.
https://doi.org/10.1016/j.porgcoat.2011.05.016
[45]  Jiang, B., Tsavalas, J.G. and Sundberg, D.C. (2018) Morphology Control in Surfactant Free Polyurethane/Acrylic Hybrid Latices—The Special Role of Hydrogen Bonding. Polymer (Guildf), 139, 107-122.
https://doi.org/10.1016/j.polymer.2018.01.054
[46]  Gadhave, R. and Dhawale, P. (2022) State of Research and Trends in the Development of Polyvinyl Acetate-Based Wood Adhesive. Open Journal of Polymer Chemistry, 12, 13-42.
https://doi.org/10.4236/ojpchem.2022.121002
[47]  Didier, B., Mercier, R., Alberola, N.D. and Bas C. (2008) Preparation of Polyimide/Silica Hybrid Material by Sol-Gel Process under Basic Catalysis: Comparison with Acid Conditions. Journal of Polymer Science Part B: Polymer Physics, 46, 1891-1902.
https://doi.org/10.1002/polb.21522
[48]  Wang, S., Ahmad, Z. and Mark, J.E. (1994) Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane. Chemistry of Materials, 6, 943-946.
https://doi.org/10.1021/cm00043a013
[49]  Zhu, Z.-K., Yang, Y., Yin, J. and Qi, Z.-N. (1999) Preparation and Properties of Organosoluble Polyimide/Silica Hybrid Materials by Sol-Gel Process. Journal of Applied Polymer Science, 73, 2977-2984.
https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J
[50]  Shang, X., Zhu, Z., Yin, J. and Ma, X. (2002) Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent. Chemistry of Materials, 14, 71-77.
https://doi.org/10.1021/cm010088v
[51]  Chen, B., Chiu, T.-M. and Tsay, S. (2004) Synthesis and Characterization of Polyimide/Silica Hybrid Nanocomposites. Journal of Applied Polymer Science, 94, 382-393.
https://doi.org/10.1002/app.20947
[52]  Wang, L., Tian, Y., Ding, H. and Li, J. (2006) Microstructure and Properties of Organosoluble Polyimide/Silica Hybrid Films. European Polymer Journal, 42, 2921-2930.
https://doi.org/10.1016/j.eurpolymj.2006.08.004
[53]  Ochi, M., Takahashi, R. and Terauchi, A. (2001) Phase Structure and Mechanical and Adhesion Properties of Epoxy/Silica Hybrids. Polymer (Guildf), 42, 5151-5158.
https://doi.org/10.1016/S0032-3861(00)00935-6
[54]  Davis, S.R., Brough, A.R. and Atkinson, A. (2003) Formation of Silica/Epoxy Hybrid Network Polymers. Journal of Non-Crystalline Solids, 315, 197-205.
https://doi.org/10.1016/S0022-3093(02)01431-X
[55]  Pirhady Tavandashti, N., Sanjabi, S. and Shahrabi, T. (2009) Corrosion Protection Evaluation of Silica/Epoxy Hybrid Nanocomposite Coatings to AA2024. Progress in Organic Coatings, 65, 182-186.
https://doi.org/10.1016/j.porgcoat.2008.10.010
[56]  Chiang, C.-L., Chang, R.-C. and Chiu, Y.-C. (2007) Thermal Stability and Degradation Kinetics of Novel Organic/Inorganic Epoxy Hybrid Containing Nitrogen/Silicon/ Phosphorus by Sol-Gel Method. Thermochimica Acta, 453, 97-104.
https://doi.org/10.1016/j.tca.2006.11.013
[57]  Nabuurs, T., Baijards, R.A. and German, A.L. (1996) Alkyd-Acrylic Hybrid Systems for Use as Binders in Waterborne Paints. Progress in Organic Coatings, 27, 163-172.
https://doi.org/10.1016/0300-9440(95)00533-1
[58]  Shoaf, G.L. and Stockl, R.R. (2003) Alkyd/Acrylic Hybrid Latexes with Enhanced Oxidative Curing. Polymer Reaction Engineering, 11, 319-334.
https://doi.org/10.1081/PRE-120024417
[59]  Jowkar-Deriss, M. and Karlsson, O.J. (2004) Morphologies and Droplet Sizes of Alkyd-Acrylic Hybrids with High Solids Content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 245, 115-125.
https://doi.org/10.1016/j.colsurfa.2004.07.003
[60]  Goikoetxea, M., Minari, R.J., Beristain, I., Paulis, M., Barandiaran, M.J. and Asua, J.M. (2010) A New Strategy to Improve Alkyd/Acrylic Compatibilization in Waterborne Hybrid Dispersions. Polymer (Guildf), 51, 5313-5317.
https://doi.org/10.1016/j.polymer.2010.09.052
[61]  Wang, T., De Las Heras Alarcón, C., Goikoetxea, M., Beristain, I., Paulis, M., Barandiaran, M.J., Asua, J.M. and Keddie, J.L. (2010) Cross-Linked Network Development in Compatibilized Alkyd/Acrylic Hybrid Latex Films for the Creation of Hard Coatings. Langmuir, 26, 14323-14333.
https://doi.org/10.1021/la102392x
[62]  Heiskanen, N., Jamsa, S., Paajanen, L. and Koskimies, S. (2010) Synthesis and Performance of Alkyd-Acrylic Hybrid Binders. Progress in Organic Coatings, 67, 329-338.
https://doi.org/10.1016/j.porgcoat.2009.10.025
[63]  Aynali, F., Sakar, G., Kocyigit, E.S. and Kades, A. (2023) Synthesis of Acrylic-Modified Water-Reducible Alkyd Resin: Improvement of Corrosion Resistance in Painting Formulations. Journal of Coatings Technology and Research, 20, 2007-2017.
https://doi.org/10.1007/s11998-023-00795-2
[64]  Elrebii, M., Ben Mabrouk, A. and Boufi, S. (2014) Synthesis and Properties of Hybrid Alkyd-Acrylic Dispersions and Their Use in VOC-Free Waterborne Coatings. Progress in Organic Coatings, 77, 757-764.
https://doi.org/10.1016/j.porgcoat.2013.12.016
[65]  Elrebii, M., Kamoun, A. and Boufi, S. (2015) Waterborne Hybrid Alkyd-Acrylic Dispersion: Optimization of the Composition Using Mixture Experimental Designs. Progress in Organic Coatings, 87, 222-231.
https://doi.org/10.1016/j.porgcoat.2015.06.006
[66]  Zhang, J., Chen, J., Lu, F., Lu, W., Feng, S., et al. (2013) Polyurethane/Acrylic Hybrid Dispersions for Roof Coatings and Their Preparation. WO 2013/139019 A1.
https://lens.org/130-017-776-152-592
[67]  Galgoci, E.C., Hegedus, C.R., Snyder, J.M., et al. (2001) Urethane-Acrylic Hybrid Polymers: Performance as 1K Coatings. The Society of the Plastics Industry/Epoxy Resin Formulators Division Spring 2001 Conference, Toronto, 1-3 April 2001, 1-15.
https://cdn.thomasnet.com/kc/1163/doc/0000100055_70_2431.pdf
[68]  Hegedus, C.R. and Kloiber, K.A. (1996) Aqueous Acrylic-Polyurethane Hybrid Dispersions and Their Use in Industrial Coatings. Journal of Coatings Technology, 68, 39-48.
https://www.paint.org/wp-content/uploads/2021/09/jctsept96-hegedus.pdf
[69]  Erdem, B. and Bhattacharjee, D. (2004) A Detailed Understanding of Polyurethane Dispersions, Their Process and Applications. International Waterborne, High-Solids, and Powder Coatings Symposium, New Orleans, LA, 2004.
[70]  Dong, A., Feng, S. and Sun, D. (1998) Structure-Property Relationships of Core-Shell Type Waterborne Polyacrylate-Polyurethane Microemulsions. Macromolecular Chemistry and Physics, 199, 2635-2640.
https://doi.org/10.1002/(SICI)1521-3935(19981201)199:12<2635::AID-MACP2635>3.0.CO;2-C
[71]  Sebenik, U. and Krajnc, M. (2005) Properties of Acrylic-Polyurethane Hybrid Emulsions Synthesized by the Semibatch Emulsion Copolymerization of Acrylates Using Different Polyurethane Particles. Journal of Polymer Science Part A: Polymer Chemistry, 43, 4050-4069.
https://doi.org/10.1002/pola.20896
[72]  Drake, I., Cardoen, G., Hughes, A., Nakatani, A.I., Landes, B., Reffner, J. and Even, R. (2019) Polyurea-Acrylic Hybrid Emulsions: Characterization and Film Properties. Polymer (Guildf), 181, Article 121761.
https://doi.org/10.1016/j.polymer.2019.121761
[73]  Liu, H., Dong, M., Huang, W., Gao, J., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C. and Guo, Z. (2017) Lightweight Conductive Graphene/Thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing. Journal of Materials Chemistry C, 5, 73-83.
https://doi.org/10.1039/C6TC03713E
[74]  Huang, S., Zhu, J., Tian, J. and Niu, Z. (2019) Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Chemistry—A European Journal, 25, 14480-14494.
https://doi.org/10.1002/chem.201902660
[75]  Poussard, L., Lazko, J., Mariage, J., Raquez, J.-M. and Dubois, P. (2016) Biobased Waterborne Polyurethanes for Coating Applications: How Fully Biobased Polyols May Improve the Coating Properties. Progress in Organic Coatings, 97, 175-183.
https://doi.org/10.1016/j.porgcoat.2016.04.003
[76]  Zhang, S., Chen, Z., Guo, M., Bai, H. and Liu, X. (2015) Synthesis and Characterization of Waterborne UV-Curable Polyurethane Modified with Side-Chain Triethoxysilane and Colloidal Silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 1-9.
https://doi.org/10.1016/j.colsurfa.2014.12.004
[77]  Nie, H., Liu, Y., Li, Y., Wei, K., Wu, Z., Shi, H., Huang, H., Liu, Y., Shao, M. and Kang, Z. (2022) In-Situ Transient Photovoltage Study on Interface Electron Transfer Regulation of Carbon Dots/NiCo2O4 Photocatalyst for the Enhanced Overall Water Splitting Activity. Nano Research, 15, 1786-1795.
https://doi.org/10.1007/s12274-021-3723-2
[78]  Honarkar, H. (2019) The Effect of Different Acrylic Monomers Contents on the Properties of Waterborne Polyurethane/Acrylate Hybrids. Polymer Science, Series B, 61, 743-752.
https://doi.org/10.1134/S1560090420010030
[79]  Zhao, G., Rui, K., Dou, S.X. and Sun, W. (2018) Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 28, Article 1803291.
https://doi.org/10.1002/adfm.201803291
[80]  López, A., Chemtob, A., Milton, J.L., Manea, M., Paulis, M., Barandiaran, M.J., Theisinger, S., Landfester, K., Hergeth, W.D., Udagama, R., McKenna, T., Simal, F. and Asua, J.M. (2008) Miniemulsification of Monomer-Resin Hybrid Systems. Industrial & Engineering Chemistry Research, 47, 6289-6297.
https://doi.org/10.1021/ie701768z
[81]  Chiu, H.-T., Yang, H.-M. and Liu, C.-S. (2014) Synthesis, Morphology, and Properties of Waterborne M-TMXDI-Based Anionic Polyurethane and Hybrids. Polymer Science, Series B, 56, 247-256.
https://doi.org/10.1134/S1560090414020043
[82]  Kim, S. and Kim, H.-J. (2005) Effect of Addition of Polyvinyl Acetate to Melamine-Formaldehyde Resin on the Adhesion and Formaldehyde Emission in Engineered Flooring. International Journal of Adhesion and Adhesives, 25, 456-461.
https://doi.org/10.1016/j.ijadhadh.2005.01.001
[83]  Khan, U., May, P., Porwal, H., Nawaz, K. and Coleman, J.N. (2013) Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Applied Materials & Interfaces, 5, 1423-1428.
https://doi.org/10.1021/am302864f
[84]  Kajtna, J. and Sebenik, U. (2017) Novel Acrylic/Nanocellulose Microsphere with Improved Adhesive Properties. International Journal of Adhesion and Adhesives, 74, 100-106.
https://doi.org/10.1016/j.ijadhadh.2016.11.013
[85]  Lu, Y. and Larock, R.C. (2008) Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules, 9, 3332-3340.
https://doi.org/10.1021/bm801030g
[86]  Lligadas, G., Tüzün, A., Ronda, J.C., Galià, M. and Cádiz, V. (2014) Polybenzoxazines: New Players in the Bio-Based Polymer Arena. Polymer Chemistry, 5, 6636-6644.
https://doi.org/10.1039/C4PY00914B
[87]  Athawale, V.D. and Kulkarni, M.A. (2009) Preparation and Properties of Urethane/Acrylate Composite by Emulsion Polymerization Technique. Progress in Organic Coatings, 65, 392-400.
https://doi.org/10.1016/j.porgcoat.2009.03.004
[88]  Noble, K.-L. (1997) Waterborne Polyurethanes. Progress in Organic Coatings, 32, 131-136.
https://doi.org/10.1016/S0300-9440(97)00071-4
[89]  Wicks, Z.W., Wicks, D.A. and Rosthauser, J.W. (2002) Two Package Waterborne Urethane Systems. Progress in Organic Coatings, 44, 161-183.
https://doi.org/10.1016/S0300-9440(02)00002-4
[90]  Mehravar, S., Ballard, N., Tomovska, R. and Asua, J.M. (2019) Polyurethane/Acrylic Hybrid Waterborne Dispersions: Synthesis, Properties and Applications. Industrial & Engineering Chemistry Research, 58, 20902-20922.
https://doi.org/10.1021/acs.iecr.9b02324
[91]  Li, K., Wang, Y., Gao, B., Lv, X., Si, Z. and Wang, H. (2021) Conjugated Microporous Polyarylimides Immobilization on Carbon Nanotubes with Improved Utilization of Carbonyls as Cathode Materials for Lithium/Sodium-Ion Batteries. Journal of Colloid and Interface Science, 601, 446-453.
https://doi.org/10.1016/j.jcis.2021.05.081
[92]  Deng, Y.J., Zhou, C., Zhang, M.Y. and Zhang, H.X. (2018) Effects of the Reagent Ratio on the Properties of Waterborne Polyurethanes-Acrylate for Application in Damping Coating. Progress in Organic Coatings, 122, 239-247.
https://doi.org/10.1016/j.porgcoat.2018.05.025
[93]  Koukiotis, C.G., Karabela, M.M. and Sideridou, I.D. (2012) Mechanical Properties of Films of Latexes Based on Copolymers BA/MMA/DAAM and BA/MMA/ VEOVA-10/DAAM and the Corresponding Self-Crosslinked Copolymers Using the Adipic Acid Dihydrazide as Crosslinking Agent. Progress in Organic Coatings, 75, 106-115.
https://doi.org/10.1016/j.porgcoat.2012.04.004
[94]  Ismail, M., Noruzman, A.H., Bhutta, M.A.R., Yusuf, T.O. and Ogiri, I.H. (2016) Effect of Vinyl Acetate Effluent in Reducing Heat of Hydration of Concrete. KSCE Journal of Civil Engineering, 20, 145-151.
https://doi.org/10.1007/s12205-015-0045-5
[95]  El-Actsser, M.S., Tang, J., Wang, X., Daniels, E.S., Dimonie, V.L. and Sudol, E.D. (2001) Advances in Emulsion Polymerization for Coatings Applications: Latex Blends and Reactive Surfactants. Journal of Coatings Technology, 73, 51-63.
https://doi.org/10.1007/BF02698376
[96]  Landfester, K. (2009) Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angewandte Chemie International Edition, 48, 4488-4507.
https://doi.org/10.1002/anie.200900723
[97]  Krajnc, M. and Sebenik, U. (2009) Poly(Methyl Methacrylate)/Montmorillonite Nanocomposites Prepared by Bulk Polymerization and Melt Compounding. Polymer Composites, 30, 1678-1686.
https://doi.org/10.1002/pc.20742
[98]  Peruzzo, P.J., Anbinder, P.S., Pardini, O.R., Costa, C.A., Leite, C.A., Galembeck, F. and Amalvy, J.I. (2010) Polyurethane/Acrylate Hybrids: Effects of the Acrylic Content and Thermal Treatment on the Polymer Properties. Journal of Applied Polymer Science, 116, 2694-2705.
https://doi.org/10.1002/app.31795
[99]  Geng, S., Haque, M.M.-U. and Oksman, K. (2016) Crosslinked Poly(Vinyl Acetate) (PVAc) Reinforced with Cellulose Nanocrystals (CNC): Structure and Mechanical Properties. Composites Science and Technology, 126, 35-42.
https://doi.org/10.1016/j.compscitech.2016.02.013
[100]  Vlad, S., Vlad, A. and Oprea, S. (2002) Interpenetrating Polymer Networks Based on Polyurethane and Polysiloxane. European Polymer Journal, 38, 829-835.
https://doi.org/10.1016/S0014-3057(01)00233-6
[101]  Jin, Y.-Z., Hahn, Y.B., Nahm, K.S. and Lee, Y.-S. (2005) Preparation of Stable Polyurethane-Polystyrene Copolymer Emulsions via RAFT Polymerization Process. Polymer (Guildf), 46, 11294-11300.
https://doi.org/10.1016/j.polymer.2005.10.049
[102]  Jiang, L., Liu, Z., Hu, K., Kong, W. and Lei, J. (2019) Preparation and Properties of Environment-Friendly Acrylic Latex Laminating Adhesives Applied in Plastic/Plastic Composite Films. Journal of Adhesion Science and Technology, 33, 2-17.
https://doi.org/10.1080/01694243.2018.1486128
[103]  Yildiz, Z., Onen, H.A., Gungor, A., Wang, Y. and Jacob, K. (2018) Effects of NCO/OH Ratio and Reactive Diluent Type on the Adhesion Strength of Polyurethane Methacrylates for Cord/Rubber Composites. Polymer-Plastics Technology and Engineering, 57, 935-944.
https://doi.org/10.1080/03602559.2017.1364382
[104]  Li, B., Xin, X., Liu, H., Xu, B., Wu, T., Wang, P., Yu, X. and Yu, Y. (2017) Synthesis and Properties of Polyurethane-Acrylate Hybrid Emulsion via Monomer Dilution Method and Emulsification Method. Progress in Organic Coatings, 112, 263-269.
https://doi.org/10.1016/j.porgcoat.2017.08.001
[105]  Deng, Y., Zhou, C., Zhang, Q., Zhang, M. and Zhang, H. (2020) Structure and Performance of Waterborne Polyurethane-Acrylate Composite Emulsions for Industrial Coatings: Effect of Preparation Methods. Colloid and Polymer Science, 298, 139-149.
https://doi.org/10.1007/s00396-019-04583-6
[106]  Gadhave, R.V. and Vineeth, S.K. (2023) Development and Formulation of a Novel Plasticizer-Free Polyvinyl Acetate-Based Wood Adhesive. Journal of Adhesion Science and Technology, 1-19.
https://doi.org/10.1080/01694243.2023.2278368
[107]  Naghash, H.J., Akhtarian, R. and Iravani, M. (2014) Synthsis and Properties of Polyvinyl Acetate Emulsion Copolymers by Three Novel Non-Ionic Functional Polyurethane Surfactants. Korean Journal of Chemical Engineering, 31, 1281-1287.
https://doi.org/10.1007/s11814-014-0042-2
[108]  Degrandi-Contraires, E., Udagama, R., McKenna, T., Bourgeat-Lami, E., Plummer, C.J.G. and Creton, C. (2014) Influence of Composition on the Morphology of Polyurethane/Acrylic Latex Particles and Adhesive Films. International Journal of Adhesion and Adhesives, 50, 176-182.
https://doi.org/10.1016/j.ijadhadh.2014.01.025
[109]  Wang, C., Chu, F., Graillat, C., Guyot, A. and Gauthier, C. (2005) Hybrid Polymer Latexes—Acrylics-Polyurethane: II. Mechanical Properties. Polymers for Advanced Technologies, 16, 139-145.
https://doi.org/10.1002/pat.557
[110]  Wang, L., Xu, F., Li, H., Liu, Y. and Liu, Y. (2017) Preparation and Stability of Aqueous Acrylic Polyol Dispersions for Two-Component Waterborne Polyurethane. Journal of Coatings Technology and Research, 14, 215-223.
https://doi.org/10.1007/s11998-016-9845-x
[111]  Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J. and Yang, B. (2015) The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Research, 8, 355-381.
https://doi.org/10.1007/s12274-014-0644-3
[112]  Madbouly, S.A. and Otaigbe, J.U. (2009) Recent Advances in Synthesis, Characterization and Rheological Properties of Polyurethanes and POSS/Polyurethane Nanocomposites Dispersions and Films. Progress in Polymer Science, 34, 1283-1332.
https://doi.org/10.1016/j.progpolymsci.2009.08.002
[113]  Nanda, A.K., Wicks, D.A., Madbouly, S.A. and Otaigbe, J.U. (2005) Effect of Ionic Content, Solid Content, Degree of Neutralization, and Chain Extension on Aqueous Polyurethane Dispersions Prepared by Prepolymer Method. Journal of Applied Polymer Science, 98, 2514-2520.
https://doi.org/10.1002/app.22141
[114]  Li, W., Wu, S., Zhang, H., Zhang, X., Zhuang, J., Hu, C., Liu, Y., Lei, B., Ma, L. and Wang, X. (2018) Enhanced Biological Photosynthetic Efficiency Using Light-Harvesting Engineering with Dual-Emissive Carbon Dots. Advanced Functional Materials, 28, Article 1804004.
https://doi.org/10.1002/adfm.201804004
[115]  Sebenik, U. and Krajnc, M. (2004) Seeded Semibatch Emulsion Copolymerization of Methyl Methacrylate and Butyl Acrylate Using Polyurethane Dispersion: Effect of Soft Segment Length on Kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233, 51-62.
https://doi.org/10.1016/j.colsurfa.2003.11.021
[116]  Bhavsar, R.A. and Nehete, K.M. (2019) Rheological Approach to Select Most Suitable Associative Thickener for Water-Based Polymer Dispersions and Paints. Journal of Coatings Technology and Research, 16, 1089-1098.
https://doi.org/10.1007/s11998-019-00194-6
[117]  Chaabouni, O. and Boufi, S. (2017) Cellulose Nanofibrils/Polyvinyl Acetate Nanocomposite Adhesives with Improved Mechanical Properties. Carbohydrate Polymers, 156, 64-70.
https://doi.org/10.1016/j.carbpol.2016.09.016
[118]  Glass, J.E. (1999) Adsorption of Hydrophobically-Modified, Ethoxylated Urethane Thickeners on Latex and Titanium Dioxide Disperse Phases. Advances in Colloid and Interface Science, 79, 123-148.
https://doi.org/10.1016/S0001-8686(98)00076-1
[119]  Alvarez, G.A., Fuensanta, M., Orozco, V.H., Giraldo, L.F. and Martín-Martíne, J.M. (2018) Hybrid Waterborne Polyurethane/Acrylate Dispersion Synthesized with Bisphenol A-Glicidylmethacrylate (Bis-GMA) Grafting Agent. Progress in Organic Coatings, 118, 30-39.
https://doi.org/10.1016/j.porgcoat.2018.01.016
[120]  Kirsch, S., Pfau, A., Hadicke, E. and Leuninger, J. (2002) Interface and Bulk Properties in Films of Phase Separated Dispersion Particles. Progress in Organic Coatings, 45, 193-204.
https://doi.org/10.1016/S0300-9440(02)00053-X
[121]  Sperling, L.H. (2005) Multicomponent Polymeric Materials. In: Introduction to Physical Polymer Science, Wiley, Hoboken, 687-756.
https://doi.org/10.1002/0471757128.ch13
[122]  Ren, L., Guo, X., Zhao, Y. and Qiang, T. (2019) Synthesis and Properties of Waterborne Polyurethane Incorporated with Phenolic Acid Grafted Oligochitosan. Progress in Organic Coatings, 135, 410-416.
https://doi.org/10.1016/j.porgcoat.2019.06.030
[123]  Aznar, A.C., Pardini, O.R. and Amalvy, J.I. (2006) Glossy Topcoat Exterior Paint Formulations Using Water-Based Polyurethane/Acrylic Hybrid Binders. Progress in Organic Coatings, 55, 43-49.
https://doi.org/10.1016/j.porgcoat.2005.11.001
[124]  Liu, Q., Liao, B., Pang, H., Lu, M. and Meng, Y. (2020) Preparation and Characterization of a Self-Matting Coating Based on Waterborne Polyurethane-Polyacrylate Hybrid Dispersions. Progress in Organic Coatings, 143, Article 105551.
https://doi.org/10.1016/j.porgcoat.2020.105551
[125]  Volmajer, N.K., Steinbücher, M., Berce, P., Venturini, P. and Gaberscek, M. (2019) Electrochemical Impedance Spectroscopy Study of Waterborne Epoxy Coating Film Formation. Coatings, 9, Article 254.
https://doi.org/10.3390/coatings9040254
[126]  Ben Mabrouk, A., Dufresne, A. and Boufi, S. (2020) Cellulose Nanocrystal as Ecofriendly Stabilizer for Emulsion Polymerization and Its Application for Waterborne Adhesive. Carbohydrate Polymers, 229, Article 115504.
https://doi.org/10.1016/j.carbpol.2019.115504
[127]  Patil, S., Bharimalla, A.K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A.S.M. and Kambli, N. (2021) Effect of Polymer Blending on Mechanical and Barrier Properties of Starch-Polyvinyl Alcohol Based Biodegradable Composite Films. Food Bioscience, 44, Article 101352.
https://doi.org/10.1016/j.fbio.2021.101352
[128]  Lin, R., Zhang, Y., Li, H., Shi, Y. and Zhou, C. (2019) Tailoring the Morphology and Properties of Waterborne Polyurethanes by Incorporation of Acrylic Monomers. Progress in Organic Coatings, 135, 65-73.
https://doi.org/10.1016/j.porgcoat.2019.05.019
[129]  Gilicinski, A. and Hegedus, C. (1997) New Applications in Studies of Waterborne Coatings by Atomic Force Microscopy. Progress in Organic Coatings, 32, 81-88.
https://doi.org/10.1016/S0300-9440(97)00037-4
[130]  Hirose, M., Zhou, J. and Nagai, K. (2000) The Structure and Properties of Acrylic-Polyurethane Hybrid Emulsions. Progress in Organic Coatings, 38, 27-34.
https://doi.org/10.1016/S0300-9440(99)00081-8
[131]  Van Hamersveld, E.M., Van Es, J.J.G., German, A., Cuperus, F., Weissenborn, P. and Hellgren, A.-C. (1999) Oil-Acrylic Hybrid Latexes as Binders for Waterborne Coatings. Progress in Organic Coatings, 35, 235-246.
https://doi.org/10.1016/S0300-9440(99)00040-5
[132]  Shin, M., Lee, Y., Rahman, M. and Kim, H. (2013) Synthesis and Properties of Waterborne Fluorinated Polyurethane-Acrylate Using a Solvent-/Emulsifier-Free Method. Polymer (Guildf), 54, 4873-4882.
https://doi.org/10.1016/j.polymer.2013.07.005
[133]  Xiao, X. and Wang, Y. (2009) Emulsion Copolymerization of Fluorinated Acrylate in the Presence of a Polymerizable Emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 151-156.
https://doi.org/10.1016/j.colsurfa.2009.07.006
[134]  Kim, B.G., Sohn, E.-H., Cho, K. and Lee, J.-C. (2008) Semifluorinated Side Group Poly(Oxyethylene) Derivatives Having Extremely Low Surface Energy: Synthesis, Characterization, and Surface Properties. European Polymer Journal, 44, 2912-2919.
https://doi.org/10.1016/j.eurpolymj.2008.06.038
[135]  Zhao, Z., Li, X., Li, P., Wang, C. and Luo, Q. (2014) Study on Properties of Waterborne Fluorinated Polyurethane/Acrylate Hybrid Emulsion and Films. Journal of Polymer Research, 21, Article No. 460.
https://doi.org/10.1007/s10965-014-0460-1
[136]  Kim, H., Lee, Y., Kim, J., Park, C., Park, H., Chun, H. and Kim, H. (2016) Preparation and Properties of Crosslinkable Waterborne Polyurethane and Polyurethane-Acrylic Hybrid Emulsions and Their Crosslinked Polymers. Journal of Polymer Research, 23, Article No. 240.
https://doi.org/10.1007/s10965-016-1134-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413