全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gravitation, Density Upper Limit and Quantization of Space

DOI: 10.4236/jhepgc.2024.102033, PP. 534-545

Keywords: Gravitation, Shell Theorem, Singularity, Schwarzschild Radius, CGH Physics: Planck’s Scale

Full-Text   Cite this paper   Add to My Lib

Abstract:

The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified, to include Newton’s Shell Theorem (NST). By including NST for rR, both Schwarzschild singularity at r = 2GM/c2 and at r → 0 singularities are removed from the metric. Near R → 0, the question of maximal density is considered based on Schwarzschild’s modified metric, and compared to the quantum limit of maximal mass density put by Planck’s quantum-based universal units. It is asserted, that General relativity, when combined with Planck’s universal units, inevitably leads to quantization of gravity.

References

[1]  Lemos, J.P.S. and Silva, D.L.F.G. (2020) Maximal Extension of the Schwarzschild Metric: From Painlevé-Gullstrand to Kruskal-Szekeres. Annals of Physics, 430, Article ID: 168497.
https://doi.org/10.1016/j.aop.2021.168497
[2]  Painlevé, P. (1921) La mécanique classique et la théorie de la relativité. L’Astronomie, 36, 6-9.
[3]  Gullstrand, A. (1922) Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Almqvist & Wiksell, Stockholm.
[4]  Eddington, A.S. (1924) A Comparison of Whitehead’s and Einstein’s Formula. Nature, 113, 192.
https://doi.org/10.1038/113192a0
[5]  Finkelstein, D. (1958) Past-Future Asymmetry of the Gravitational Field of a Point Particle. Physical Review Journals Archive, 110, 965-967.
https://doi.org/10.1103/PhysRev.110.965
[6]  Lemaître, G. (1933) L’Univers en expansion. Annales de la Société Scientifique de Bruxelles, 53A, 51-83.
[7]  Synge, J. (1950) The Gravitational Field of a Particle. Proceedings of the Royal Irish Academy, Section A: Mathematical and Physical Sciences, 53, 83-114.
[8]  Brown, K. (2010) Reflections on Relativity.
https://scirp.org/reference/referencespapers?referenceid=3332982 https://philpapers.org/rec/BROROR-4
[9]  Landau, L.D. and Lifshitz, E.M. (1950) The Classical Theory of Fields. Pergamon Press, Oxford.
[10]  Einstein, A. (1939) On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses. Annals of Mathematics, 40, 922-936.
https://doi.org/10.2307/1968902
[11]  Vaz, C. (2014) Black Holes as Gravitational Atoms. International Journal of Modern Physics D, 23, Article ID: 1441002.
https://doi.org/10.1142/S0218271814410028
[12]  Corda, C. (2023) Schrödinger and Klein-Gordon Theories of Black Holes from the Quantization of the Oppenheimer and Snyder Gravitational Collapse. Communications in Theoretical Physics, 75, Article ID: 095405.
https://doi.org/10.1088/1572-9494/ace4b2
[13]  Corda, C. (2023) Black Hole Spectra from Vaz’s Quantum Gravitational Collapse. Fortschritte der Physik, 71, Article ID: 2300028.
https://doi.org/10.1002/prop.202300028
[14]  Buchdahl, H.A. (1985) Isotropic Coordinates and Schwarzschild Metric. International Journal of Theoretical Physics, 24, 731-739.
https://doi.org/10.1007/BF00670880
[15]  Kruskal, M. (1959) Maximal Extension of Schwarzschild Metric. Physical Review Journals Archive, 119, 1743-1745.
https://doi.org/10.1103/PhysRev.119.1743
[16]  Szekeres, G. (1959) On the Singularities of a Riemannian Manifold. Publicationes Mathematicae Debrecen, 7, 285-301.
https://doi.org/10.5486/PMD.1960.7.1-4.26
[17]  Gkigkitzis, I., Haranas, I. and Ragos, O. (2014) Kretschmann Invariant and Relations between Spacetime Singularities, Entropy and Information. Physics International, 5, 103-111.
https://doi.org/10.3844/pisp.2014.103.111
[18]  Henry, R.C. (2000) Kretschmann Scalar for a Kerr-Newman Black Hole. The Astrophysical Journal, 535, 350-353.
https://doi.org/10.1086/308819
[19]  Newton, I. (1687) Philosophiae Naturalis Principia Mathematica.
https://doi.org/10.5479/sil.52126.39088015628399
[20]  Arens, R. (1990) Newton’s Observations about the Field of a Uniform Thin Spherical Shell. Note di Matematica, X, 39-45.
[21]  Davie, R. Schwarzschild Metric 1-3.
https://www.youtube.com/watch?v=D1mmLjR-szY
https://www.youtube.com/watch?v=3NFqXgH-4tg
[22]  Gorelik, G.E. and Ya Frenkel, V. (1994) cGħ Physics in Bronstein’s Life. In: Gorelik, G.E. and Ya Frenkel, V., Eds., Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties, Birkhäuser, Basel, 83-121.
https://doi.org/10.1007/978-3-0348-8488-4_5
[23]  Callender, C. and Huggett, N. (2004) Physics Meets Philosophy at the Planck Scale, Contemporary Theories in Quantum Gravity. Cambridge University Press, Cambridge.
[24]  Garay, L.J. (1995) Quantum Gravity and Minimum Length. International Journal of Modern Physics A, 10, 145-165.
https://doi.org/10.1142/S0217751X95000085
[25]  Heger, A., Fryer, C.L., Woosley, S.E., Langer, N. and Hartmann, D.H. (2003) How Massive Single Stars End Their Life. Astrophysical Journal, 591, 288-300.
https://doi.org/10.1086/375341

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133